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The Flexural Instability of
Spinning Flexible Cylinder
Partially Filled With Viscous
Liquid
This paper deals with the flexural instability of flexible spinning cylinders partially filled
with viscous fluid. Using the linearized Navier–Stokes equations for the incompressible
flow, a two-dimensional model is developed for fluid motion. The resultant force exerted
on the flexible cylinder wall as the result of the fluid motion is calculated as a function of
lateral acceleration of the cylinder axis in the Laplace domain. Applying the Hamilton
principle, the governing equations of flexural motion of the rotary flexible cylinder
mounted on general viscoelastic supports are derived. Then combining the equations
describing the fluid force on the flexible cylinder with the structural dynamics equations,
the coupled-field governing equations of the system are obtained. A numerical technique
is devised with the obtained model for stability analysis of the flexible cylinder and some
examples are presented. The effect of material viscoelasticity and structural damping on
the stability margins of the flexible cylinder is examined, and some parameter studies on
the governing parameters of the critical spinning speed are carried out.
�DOI: 10.1115/1.3172143�

1 Introduction
The problem of fluid motion in a spinning flexible cylinder is

considered as an appealing research field in the fluid mechanics
studies. The spinning cylinders conveying liquid have many in-
dustrial uses in space vehicles, liquid-cooled gas turbines, and
marine and food industries such as milk centrifuges and juice
concentration processes. As the consequence of extensive engi-
neering applications, many research projects have been done on
the fluid motion and stability in a spinning flexible cylinder con-
veying liquid. Some of the research works in this issue are
brought together in the form of a book chapter by Ibrahim �1� in
which he reviewed what had been published concerning rotary
sloshing problems to date. The dynamics and stability conditions
of undamped rotors partially filled with inviscid fluid were the
main subject of many research papers �2–5�. Zhang et al. �6� de-
termined the dynamic stability of a high-spinning liquid-filled
rigid rotor with both internal and external damping. The effect of
anisotropic elastically damping bearing supports on the stability of
rigid rotors partially filled with ideal fluid was investigated by
Daich and co-workers �7,8� and Hendricks and Morton �9�. They
showed that if the fluid viscosity is not taken into account, the
rotor will experience a weak instability in a range of spinning
speeds as well as a strong instability for the remaining range.
Considering the fluid viscosity, Daich and Bar �7� showed that the
weak instability transforms into an asymptotic stability and the
strong instability range of spinning speed diminishes. Zhu �10–13�
documented some numerical and experimental results on the
whirling dynamics and stability of rigid rotors. Zhu analyzed the
stability of spinning cylinders partially filled with inviscid or vis-
cous fluid and also studied the effect of anisotropic elastic sup-
ports on the instability boundaries. Derendyayev and Soldatov
�14� and Derendyaev �15� proposed a discrete model of a rigid
rotor system with a fluid and determined the stability condition
together with the Hopf bifurcation of cylinders partially filled with

liquid. They showed that when the parameters governing the rotor
dynamics exceed the stability boundaries, the Andronov–Hopf bi-
furcation occurs. Tao and Zhang �16� used a perturbation ap-
proach to study the motion of a spinning rigid rotor mounted on
the elastic supports and partially filled with a viscous liquid. They
showed that the smaller the external damping the larger the stable
region of spinning speed. Limarchenko �17� considered the non-
steady rotation of a cylindrical storage tank partially filled with a
viscous fluid. Berman et al. �18� considered the nonlinear dynam-
ics of the rotor partially filled with viscous fluid and determined
the amplitude of the vibration in the main unstable region. Holm-
Christenson and Träger �19� employed the Navier–Stokes equa-
tions and numerically solved the flow field. Yan and Farouk �20�
represented a numerical solution of the time-dependent axisym-
metric Navier–Stokes equations using a homogeneous multiphase
model. They investigated the spin-up from rest and the steady
flow field in a partially filled rotating circular cylinder with an
over-rotating lid. Ribando �21� studied the incompressible flow in
a rapidly rotating cylinder partially filled with liquid and having a
source/sink distribution in the lateral wall. Ribando used a finite-
difference method to solve the axisymmetric governing equations
of the flow field. Yuichi et al. �22� carried out an experimental
study on the stability characteristics of a rigid rotor partially filled
with water and examined the effect of discharging liquid by cen-
trifugal force. The vibrations of a liquid partially filling a rotating
conical cavity were studied by Khoroshilov �23�. Derendyaev and
Senyatkin �24� determined the stability conditions of the steady-
state rotation of a cylinder filled with a stratified nonuniform vis-
cous incompressible liquid. Preussner and Kollmann �25� ana-
lyzed the stability of a rigid rotor spinning at constant angular
velocity and having a cylindrical sectored and fluid filled cavity.
They partitioned the cavity into n equal sectors by radially extend-
ing walls and assumed that each sector is partially filled with the
same amount of an inviscid incompressible fluid.

There are few reports dealing with the flexural instability of
spinning flexible cylinder partially filled with liquid in the litera-
ture. Tao and Zhang �26� used the model of Zhang et al. �6� for
ideal-fluid motion and employed the simply supported Euler–
Bernoulli beam as the structural model of the flexible cylinder.

Contributed by the Applied Mechanics Division of ASME for publication in the
JOURNAL OF APPLIED MECHANICS. Manuscript received August 30, 2008; final manu-
script received June 6, 2009; published online September 23, 2009. Review con-
ducted by Nadine Aubry.
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However, their structural model did not involve the Coriolis and
inertial terms, which strongly affect the structural dynamics of the
spinning flexible cylinder. Firouz-Abadi and Haddadpour �27� de-
rived a general formulation for flexural motion of viscoelastic
cylinders partially filled with inviscid fluid and investigated the
stability regions of the flexible cylinder.

In the present paper, we propose an analytical model for the
flexural vibrations of spinning cylinders partially filled with vis-
cous fluid and mounted on general viscoelastic supports. The
coupled-field equations of the structural motion and the fluid dy-
namics are derived in the Laplace domain. A numerical technique
is devised along with the obtained model for stability analysis of
the flexural motion of the flexible cylinder and some studies on
the effect of governing parameters of the critical spinning speed
are carried out.

2 Liquid Sloshing Dynamics
Consider a closed flexible cylinder partially filled with incom-

pressible fluid. The flexible cylinder spins at a constant angular
velocity � about its longitudinal axis. Assuming that the gravity
force is very small as compared with the centrifugal force, the
fluid will form an annular ring similar to that shown in Fig. 1.
Figure 1 shows a flexible cylinder with general viscoelastic sup-
ports at both ends and the support detail in front and left views is
shown. The flexural motion of the cylinder is described by u and
w, which are measured in the rotating frame xy. From the basic
principles of fluid mechanics, it is known that the motion is trans-
mitted by shear stresses to the fluid and after a short time interval
it will posses the same angular velocity throughout the cylinder.

Tao and Zhang �26� estimated the orders of magnitude of all
terms in the governing equations and boundary conditions of
three-dimensional flow in the slender flexible cylinder and showed
that the flow can be modeled using a quasi-two-dimensional
model. Accordingly, the small motions of the fluid in the rotating
frame x�y� can be described by the linearized Navier–Stokes
equations as

�vr

�t
− r�2 − 2�v� + ax� cos � + ay� sin �

= −
1

�

�P

�r
+ ���2vr −

vr

r2 −
2

r2

�v�

��
� �1�

�v�

�t
+ 2�vr − ax� sin � + ay� cos �

= −
1

�r

�P

��
+ ���2v� −

v�

r2 +
2

r2

�vr

��
� �2�

where vr and v� are the radial and tangential velocity components
of fluid particles in the rotating x�y� frame, � is the fluid density,
P is the total pressure, � is the kinematic viscosity, and ax� and ay�
are the acceleration components of the origin of the x�y� frame.
Also, �2 is the Laplacian operator as

�2 =
�2

�2r
+

1

r

�

�r
+

1

r2

�2

�2�
�3�

The continuity equation is

��rvr�
�r

+
�v�

��
= 0 �4�

The total pressure P in Eqs. �1� and �2� can be decomposed into a
stationary part due to the centrifugal force, a small pressure
caused by the translational acceleration of the x�y� frame and a
small pressure component p as the result of small motion of the
fluid.

P =
��2r2

2
− �r�ax� cos � + ay� sin �� + p�r,�,t� �5�

where ri is the cavity radius. Substituting Eq. �5� into the Navier–
Stokes equations �1� and �2� and transforming the resulting equa-
tions into the Laplace domain, one obtains

sv̄r − 2�v̄� = −
1

�

� p̄

�r
+ ���2v̄r −

v̄r

r2 −
2

r2

� v̄�

r2 � �
� �6�

sv̄� + 2�v̄r = −
1

�r

� p̄

��
+ ���2v̄� −

v̄�

r2 +
2

r2

� v̄r

��
� �7�

where the overbar symbol indicates the Laplace transformed vari-
able and s=�+ i� is the Laplace variable. The solution of v̄r, v̄�,
and p̄ can be assumed as
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Fig. 1 Schematic of a spinning flexible cylinder partially with liquid
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v̄r = ro��
−�

�

v̂r�n����ein�, v̄� = ro��
−�

�

v̂��n����ein�

�8�

p̄ = �ro
2�2�

−�

�

p̂�n����ein�

where �=r /ro, i=�−1, and ro is the cylinder inner radius. The
Reynolds number Re and the cavity ratio 	 are defined as

Re =
ro

2�

�
, 	 =

ri

ro
�9�

Substituting the solution given in Eq. �8� into Eqs. �4�, �6�, and �7�
and by taking the coefficients of each exp�in�� equal on both sides
of these equations one can obtain the governing equations of fluid
motion in the following dimensionless form:

ŝv̂r�n� − 2v̂��n�

= − p̂�n�� + Re−1�v̂r�n�� +
1

�
v̂r�n�� −

�n2 + 1�
�2 v̂r�n� −

2in

�2 v̂��n��
�10�

ŝv̂��n� + 2v̂r�n�

= −
in

�
p̂�n� + Re−1�v̂��n�� +

1

�
v̂��n�� −

�n2 + 1�
�2 v̂��n� +

2in

�2 v̂r�n��
�11�

v̂r�n� + �v̂r�n�� + inv̂��n� = 0 �12�

where ŝ=s /� and the prime symbol is used for d /dr operator.
Solving Eqs. �12� and �11� for v̂��n� and p̂�n� gives

v̂��n� =
v̂r�n� + �v̂r�n��

n
i �13�

p̂�n� =
1

n2� Re
��s Re �2i + 2 Re n�2 − n2i + i�v̂r�n�

+ �s Re �3 − � + n2��iv̂r�n�� − 4�2iv̂r�n�� − �3iv̂r�n�� � �14�

Introducing Eqs. �13� and �14� into Eq. �10�, we obtain the fol-
lowing ordinary differential equation for v̂r�n�:

�4v̂r�n�
�4� + 6�3v̂r�n�� + �5 − 2n2 − Re �2ŝ��2v̂r�n��

− �2n2 + 1 + 3 Re �2ŝ��v̂r�n�� + �n2 + Re �2ŝ − 1��n2 − 1�v̂r�n�

= 0 �15�
which has a solution of the form

v̂r�n� = c̄1�n��
−1−n + c̄2�n��

1+n + c̄3�n�
Jn��− Re ŝ��

�

+ c̄4�n�
Yn��− Re ŝ��

�
�16�

where Jn and Yn are the Bessel functions of the first and second
kinds and order n. For the case of inviscid liquid, the Bessel
function terms in Eq. �16� vanish as the Reynolds number goes to
infinity and the solution of v̂r�n� will be reduced to the form given
in Ref. �26�. The nonpenetration boundary condition at the wetted
surface of the cylinder gives

v̂r�n�	�=1 = 0 �17�

Also the tangential component of fluid velocity v̂��n� at the wetted
surface of the cylinder must be zero. Thus using Eq. �12� one can
obtain

v̂r�n�� 	�=1 = 0 �18�

The free surface of the fluid must be free from shear stresses,
namely,


r�	r=ri
= ��
�1

r

�vr

��
+

�v�

�r
−

v�

r
�


ri

= 0 �19�

Using Eq. �13� in Eq. �19�, the shear-stress-free boundary condi-
tion at the fluid free surface can be written in the following di-
mensionless form

	v̂r�n�� 	�=	 + v̂r�n�� 	�=	 = 0 �20�

The fluid free surface is defined by r=ri+��r , t�, where ��r , t� is
the free surface elevation. Thus, the following kinematic boundary
condition is imposed on the free surface

vr	ri+� =
��

�t
�21�

The cavity pressure remains constant; thus, evaluating Eq. �5� on
the free surface and eliminating the nonlinear terms yields a dy-
namic boundary condition as

p + �ri�
2� = �ri�ax� cos � + ay� sin �� �22�

Applying the Laplace transformation to the boundary condition
equations �21� and �22� and combining them gives the following
equation at the fluid free surface:

sp̄ + �ri�
2v̄r = s�ri�āx� cos � + āy� sin �� at r = ri �23�

Introducing the solution of p̄ and v̄r from Eq. �8� into Eq. �23�
yields the following identity:

�
n=−�

�

�ŝp̂�n� + 	v̂r�n��ein� =
	

2ro�2 ŝ�āx� − iāy��e
−i�

+
	

2ro�2 ŝ�āx� + iāy��e
i� �24�

To satisfy the identity equation �24�, the coefficient of ein� must be
equal on the both sides of this equation for any mode number n
and thus we have

ŝp̂�−1�	�=	 + 	v̂r�−1�	�=	 −
	

2ro�2 ŝ�āx� − iāy�� = 0 �25�

ŝp̂�1�	�=	 + 	v̂r�1�	�=	 −
	

2ro�2 ŝ�āx� + iāy�� = 0 �26�

ŝp̂�n�	�=	 + 	v̂r�n�	�=	 = 0, n � − 1,1 �27�

Substituting the solution of the radial component of fluid velocity
from Eq. �16� into Eqs. �17�, �18�, �20�, and �25�–�27�, the bound-
ary condition equations can be summarized in the following ma-
trix form:

A�−1��c̄�−1�� =
	

2ro�2 ŝ�āx� − iāy���0 0 0 1�T �28�

A�1��c̄�1�� =
	

2ro�2 ŝ�āx� + iāy���0 0 0 1�T �29�

A�n��c̄�n�� = 0, n � − 1,1 �30�

where �c̄n�= �c̄1�n�c̄2�n�c̄3�n�c̄4�n��T. Using Eqs. �28�–�30�, the vec-
tors �c̄�1�� and �c̄�−1�� are calculated as functions of āx� and āy�.
However to find a nontrivial solution for the case of n�−1,1 the
determinant of the coefficient matrix of �c̄n� must be zero, namely,
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	A�n�	 = 0, n � − 1,1 �31�

The resultant forces exerted on the cylinder wall, as a result of
fluid pressure and shear stress on the wetted cylinder surface, are
evaluated as

F̄x� =

0

2�

�P̄	r=ro
cos � − 
̄r�	r=ro

sin ��rod�

=
��ro

3�2

Re
��v̂r�1�� 	�=1 + 5v̂r�1�� 	�=1� + �v̂r�−1�� 	�=1 + 5v̂r�−1�� 	�=1��

− ��ro
2āx� �32�

F̄y� =

0

2�

�P̄	r=ro
sin � + 
̄r�	r=ro

cos ��rod�

=
��ro

3�2

Re
��v̂r�1�� 	�=1 + 5v̂r�1�� 	�=1�i − �v̂r�−1�� 	�=1 + 5v̂r�−1�� 	�=1�i�

− ��ro
2āy� �33�

Using the solution of Eqs. �28� and �29� for �c̄�1�� and �c̄�−1��, the
values of radial derivatives of v̂r�−1� and v̂r�1� at the wetted surface
of the flexible cylinder are known as linear functions of ax� and
ay�. Consequently, we can show that Eqs. �32� and �33� can be
expressed in the following form:

�F̄x�

F̄y�

� = ��ro
2�1 − 	2��
 − �

� 

��āx�

āy�
� �34�

3 Structural Dynamics
The flexural vibration of a viscoelastic slender flexible cylinder

can be simulated using the Euler–Bernoulli beam model. Figure 1
shows the bending displacement components of the flexible cyl-
inder axis u and w in the rotating xy frame. The elastic potential
energy U due to the flexural deflection of the beam as well as the
end spring deformations and the kinetic energy T of the beam can
be calculated as �28�

U =
1

2

0

L

EI�� �2w

�z2 �2

+ � �2u

�z2�2�dz +
1

2
kt0

�u2	z=0 + w2	z=0�

+
1

2
kt1

�u2	z=L + w2	z=L� +
1

2
kr0
�
� �u

�z
�2


z=0

+ 
� �w

�z
�2


z=0
�

+
1

2
kr1
�
� �u

�z
�2


z=L

+ 
� �w

�z
�2


z=L
� �35�

T =
1

2

0

L

m�� �w

�t
− �u�2

+ � �u

�t
+ �w�2�dz �36�

where m is the mass per unit length density, I is the moment of
inertia of the beam section, and E is Young’s modulus of elasticity.
The translational and rotational spring constants at the cylinder
ends are indicated by kt and kr and the subindices 0 and 1 point to
the cylinder supports at z=0 and z=L, respectively.

The viscoelastic damping is proportional to the time rate of
strain and can be represented using the classical Kelvin–Voigt
model. For the structural damping due to the internal friction, the
energy loss per cycle of stress was found to be proportional to the
amplitude squared and thus it can be modeled as a complex stiff-
ness �28�. Thus, the Rayleigh dissipation function due to the ma-
terial viscoelasticity and the structural hysteretic damping can be
expressed in the form

R =
1

2

0

L

EI��
�

�t
+ ig��� �2w

�z2 �2

+ � �2u

�z2�2�dz �37�

in which � is the viscoelasticity loss factor and g is the structural
damping factor. The dissipation function due to the external
damping forces at the cylinder supports can be written as

R� =
1

2
ct0

��ẇ	z=0 − �u	z=0�2 + �u̇	z=0 + �w	z=0�2�

+
1

2
ct1

��ẇ	z=L − �u	z=L�2 + �u̇	z=L + �w	z=L�2�

+
1

2
cr0
��
 �ẇ

�z



z=0

− �
 �u

�z



z=0
�2

+ �
 � u̇

�z



z=0

+ �
 �w

�z



z=0
�2�

+
1

2
cr1
��
 �ẇ

�z



z=L

− �
 �u

�z



z=L
�2

+ �
 � u̇

�z



z=L

+ �
 �w

�z



z=L
�2� �38�

where ct and cr denote the translational and rotational viscous
damping coefficients at the cylinder supports. The variation in
work done by the fluid force on the flexible cylinder can be writ-
ten as

�W =

0

L

�Fx��u + Fy��w�dz �39�

Using the Hamilton principle which states

�H =

0

t

��T − �U + ��R + R�� + �W�dt = 0 �40�

along with Eqs. �35�–�39�, one can obtain the equations governing
the flexural vibration of the flexible cylinder in the rotating xy
frame. The Laplace transformed equations of motion can be writ-
ten as

ms2w̄ − 2m�ūs + EI�1 + �s + ig�w̄�4� − m�2w̄ = F̄x� �41�

ms2ū + 2m�w̄s + EI�1 + �s + ig�ū�4� − m�2ū = F̄y� �42�

Using the following operator definitions

Bj
1 = �ktj

+ ctj
s� + �− 1� jEI�1 + �s + ig�

�3

�z3 �43�

Bj
2 = �krj

+ crj
s�

�

�z
− �− 1� jEI�1 + �s + ig�

�2

�z2 �44�

Bj
3 = �ctj

�45�

Bj
4 = �crj

�

�z
�46�

the boundary conditions for w̄ are

B0
1w̄ − B0

3ū = 0, B0
2w̄ − B0

4ū = 0 at z = 0 �47�

B1
1w̄ − B1

3ū = 0, B1
2w̄ − B1

4ū = 0 at z = L �48�

and similarly for ū we have

B0
1ū + B0

3w̄ = 0, B0
2ū + B0

4w̄ = 0 at z = 0 �49�

B1
1ū + B1

3w̄ = 0, B1
2ū + B1

4w̄ = 0 at z = L �50�
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4 Coupled Fluid-Structure System and the Solution
Method

The translational acceleration of the origin of the moving frame
x�y� at each section of the flexible cylinder is related to the flex-
ural deflection of the cylinder as

āx� = w̄s2 − 2�ūs − w̄�2 �51�

āy� = ūs2 + 2w̄�s − ū�2 �52�

Substituting ax� and ay� from Eqs. �51� and �52� into Eq. �34� and
using the resulting expression for the fluid forces in Eqs. �41� and
�42�, the coupled fluid-structure equations of motion are derived.
These equations involve highly transcendental expressions in
terms of the dimensionless Laplace parameter ŝ, which makes it
very complicated to find the root-locus and subsequently the sta-
bility margins of the coupled system of equations. In this section
we propose a numerical method for stability analysis of the
coupled equations of the fluid-structure system.

4.1 The Numerical Method for Stability Analysis. Using
the following definition for the complex bending deformation

�̄ = w̄ + iū �53�

the system of Eqs. �41� and �42� will be transformed into the
following form

m�s2 + 2�is − �2��̄ + EI�1 + �s + ig��̄�4� = F̄x� + iF̄y� �54�

Using Eqs. �51� and �52� and substituting the fluid force expres-
sions from Eq. �34� into Eq. �54�, the governing equation of the
coupled fluid-structure system can be written as

m�s2 − �2 + 2i�s��̄ + CIs�̄�4� + EI�1 + �s + ig��̄�4�

− ��ro
2�1 − 	2��
 + i���s2 − �2 + 2i�s��̄ = 0 �55�

Furthermore, the combination of Eqs. �47�–�50� yields the follow-

ing boundary conditions for the complex bending deflection �̄ as

�B0
1 + iB0

3��̄ = 0, �B0
2 + iB0

4��̄ = 0 at z = 0 �56�

�B1
1 + iB1

3��̄ = 0, �B1
2 + iB1

4��̄ = 0 at z = L �57�

The solution of the bending displacement of the flexible cylinder
in the existence of the fluid can be expressed using the following
modal expansion series:

�̄ = �
n=1

�

�̄n�ŝ��n �58�

where �ns are the complex bending mode shapes of the nonrotat-
ing flexible cylinder, neglecting internal damping terms but with
the same boundary conditions given in Eqs. �56� and �57�. Thus,
the mode shapes satisfy the following relation:

EI�n
�4� − m�n

2�n = 0 �59�

where �n is the complex natural frequency, which corresponds to
�n. Many solution methods have been represented for determina-
tion of the mode shapes and complex natural frequencies of the
beams on arbitrary supports, which can be used to solve the
boundary value equation �59� subjected to the boundary condition
equations �56� and �57� �see Refs. �29–33��.On the other hand, the
numerical methods such as the finite-element method may be eas-

ily employed to solve such problem. Anyhow, substituting �̄ from
Eq. �58� into Eq. �56� and using Eq. �59�, one can obtain

�
n=1

�

��1 − ��
 + i����ŝ + i�2 + �1 + �ŝ + ig��n
−2�m�2�n = 0

�60�

where �n, �, and � are the dimensionless spinning frequency, the
dimensionless viscoelastic loss factor, and the fluid mass ratio,
respectively, and are defined as follows:

�n =
�

�n
, � = ��, � =

��ro
2�1 − 	2�

m
�61�

To satisfy the identity equation �60�, the expression in the brackets
must be vanished, thus

�62�

At the instability boundary �ncr
, the flexible cylinder has a simple

harmonic motion and thus we have ŝ= i� /�. Furthermore, it is
easy to show that for known values of stiffness and damping of
the supports, for any mode number n, the left-hand-side of Eq.
�62� is a function of � /�� where ��=�EI /mL4, and thus for the
instability condition we have

�ncr
��/��� = h�i�/�� �63�

namely,

R��ncr
� + iJ��ncr

� = R�h� + iJ�h� �64�

To solve for and map out the instability boundaries, the following
procedure is outlined.

1. Specify the fluid mass ratio �, the cavity ratio 	, the Rey-
nolds number Re, the dimensionless viscoelastic loss factor
�, and the structural damping parameter g.

2. For a set of � /� values, say, from 0.001 to 1.0, solve Eqs.
�28� and �29� with ŝ= i� /� for �c̄�−1�� and �c̄�1��. Then using
Eqs. �32� and �33� find the values of 
 and � and plot the
imaginary part of h against its real part.

3. For a known mode number n and a set of � /�� values, plot
the imaginary part of �n versus its real part in the same plane
of h. The intersection of the h and �n graphs shows the
critical condition in which Eq. �64� is satisfied.

4. Having the critical values of h and �n, determine the critical
dimensionless spinning frequency �cr /�� and the dimen-
sionless instability frequency �cr /�.

The major advantage of Eq. �62� is that its right-hand-side h,
which involves complicated expressions in terms of ŝ, is indepen-
dent of the cylinder boundary conditions. It is of importance since
the plot of h can be simply used for any arbitrary boundary con-
ditions of the flexible cylinder. As another significant outline, it
should be noted that if the cylinder supports do not have viscous
damping, the values of �n are real for any mode number n and
thus the intersection of the plot of h with the real axis illustrates
the critical dimensionless spinning frequency �cr /�n, which is
unique for all of the mode numbers. This conclusion signifies that
for the cylinders with purely elastic supports, the critical value of
�cr /�n is independent of the translational and rotational stiffness
of the supports for any mode number n.

5 Numerical Results
This section is devoted to some numerical examples to demon-

strate the method of solution for determination of the instability
boundary of the spinning flexible cylinder partially filled with
viscous fluid. Using the described method of solution some pa-
rameter studies are also carried out. Figure 2 depicts the procedure
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of determination of instability boundaries for two cylinders: a
flexible cylinder on purely elastic supports with the following
properties �case 1�:

kt0

mL��2 =
kt1

mL��2 = 80,
ct0

mL��
=

ct1

mL��
= 0

�65�
kr0

mL2��2 =
kr1

mL2��2 = 0,
cr0

mL2��
=

cr1

mL2��
= 0

and the same flexible cylinder with the same conditions but on
viscoelastic supports as shown in the following �case 2�:

kt0

mL��2 =
kt1

mL��2 = 80,
ct0

mL��
=

ct1

mL��
= 0.25

�66�
kr0

mL2��2 =
kr1

mL2��2 = 0,
cr0

mL2��
=

cr1

mL2��
= 0

The fluid mass ratio is 10, the cavity ratio 0.6, the Reynolds num-
ber 10,000, and the viscoelastic loss factor and structural damping
are zero. Figure 2�a� illustrates the plot of h and �n for the lowest
four complex frequencies of the flexible cylinder for both test
cases. For case 1, the real axis in Fig. 2�a� corresponds to all
modes of motion. Figure 2�b� shows the values of � /�� against
the real part of �n and specifies the critical value of spinning speed
of the flexible cylinder. The instability frequency of the flexible
cylinder can be found using Fig. 2�c�. The results show that the
viscous damping of supports decreases the critical spinning fre-
quency of the flexible cylinder but Fig. 2�c� reveals that the insta-
bility frequency of the flexible cylinder is nearly constant.

The effect of viscoelasticity and structural damping of the cyl-
inder material on the stability margins is represented in Figs. 3
and 4. Figure 3 shows the instability condition of cases 1 and 2 for
various structural damping values when the viscoelastic loss fac-
tor is zero. The instability condition is shown by the letter “I” and
the restabilization point is shown by the letter “R.” It is seen from
Fig. 3 that when the structural damping increases, first, the critical
spinning speed of the cylinder decreases. Then, while enhancing

Re(�n)

�
/�

*

0.25 0.5 0.75 1 1.25
0

10

Instability
case 2

Instability
case 1

b

c

Re(h)

�
/�

0.25 0.5 0.75 1 1.25
0

0.5

Instability
case 1

Instability
case 2

Re(�n ), Re(h)
Im
(�
n),
Im
(h
)

0.25 0.5 0.75 1 1.25

case 2, �1
case 2, �2
case 2, �3
case 2, �4

Instability
case 1

0
plot

-10

�10-3

-5

5 a

In
cr
ea
si
ng

su
pp
or
ts

da
m
pi
ng

Instability
case 2

case 1, �1, 2
case 1, �3, 4
h

Fig. 2 Instability analysis graphs for cases 1 and 2: „a… plots of imaginary
parts of h and �n versus their real parts, „b… plot of dimensionless spinning
frequency Ω /�� against the real part of �n, and „c… plot of dimensionless
frequency of the fluid-structure system � /Ω against the real part of h
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the structural damping decreases the critical spinning frequency, it
causes the restabilization of the flexible cylinder after the critical
condition. Furthermore, Fig. 3 shows that adding more structural
damping makes the flexible cylinder stable at all spinning fre-
quencies as seen for g=0.02.

Figure 4 depicts the stability boundaries of the viscoelastic cyl-
inder without structural damping. Figure 4 represents an investi-
gation on the effect of viscoelasticity on the cylinder material
similar to that which was performed for the structural damping.
The results show that the effect of viscoelastic damping on the

stability margins is similar to the structural damping. Moreover, it
should be noted that when the supports’ damping increases, the
imaginary part of �n will increase as shown in Fig. 2�a�. There-
fore, the effect of increasing the supports’ damping can be ex-
plained similar to that of enhancing the material viscoelasticity or
structural damping.

To investigate the effect of fluid mass ratio and the cavity ratio,
a parameter study is done on the critical spinning speed of the
flexible cylinder partially filled with liquid and mounted on purely
elastic supports. Figure 5 shows the critical spinning frequency
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against the Reynolds number for various values of � when 	
=0.5 and Fig. 6 illustrates similar results for different values of 	
and �=3.0. The horizontal axis in Figs. 5 and 6 is logarithmic and
Re�=ro

2�n /�. Since the Reynolds number Re varies with spinning
frequency �, it cannot be simply used to determine the instability
condition and thus we define the new parameter Re�. Having the
structural parameters of the flexible cylinder, the values of �n are
known for all the mode numbers and thus the known value of Re�

can be simply used in the graphs shown in Figs. 5 and 6 to find the
critical spinning frequency for all the modes.

6 Conclusion
The stability of flexible spinning cylinders partially filled with

viscous fluid was investigated in this research. Using an analytical
solution to the linearized Navier–Stokes equations, the resultant
forces exerted on the flexible cylinder due to fluid motion were
determined in terms of flexural motion of the flexible cylinder in
the Laplace domain. The Euler–Bernoulli beam model was em-
ployed to derive the structural dynamics equations of the flexible
cylinder mounted on general viscoelastic supports and including
the material viscoelasticity and structural damping. The coupled-
field equations of the structural motion and the fluid dynamics
were used to determine the critical spinning speed of the flexible
cylinder. For this purpose, a numerical technique was introduced
to find the instability conditions and then was used for some nu-
merical examples. The performed investigations show that if the
flexible cylinder is mounted on purely elastic supports, for known
values of fluid mass ratio, cavity ratio, viscoelastic loss factor, and
structural damping, all the flexural deflection modes become un-
stable at a unique dimensionless spinning speed. The numerical
studies signify that when the supports’ damping, material vis-
coelasticity, or the structural damping increase, first, the critical
spinning speed of the flexible cylinder decreases. Then, while en-
hancing these damping quantities, decreases the critical spinning
frequency, it causes the restabilization of the flexible cylinder after
the critical condition and adding more damping may make the
flexible cylinder stable at all spinning frequencies.
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Poromechanics Solutions to
Plane Strain and Axisymmetric
Mandel-Type Problems in
Dual-Porosity and Dual-
Permeability Medium
The two-dimensional Mandel-type problem geometry is well-known to bio-
geomechanicians for testing rocks, cartilages, and bones with solutions in Cartesian
coordinates for rectangular specimens or polar coordinates for cylindrical and disk
samples. To date, all existing solutions are only applicable to single-porosity and single-
permeability models, which could fall short when the porous material exhibits multi-
porosity and/or multipermeability characteristics, such as secondary porosity or fracture.
This paper extends the plane strain and axisymmetric Mandel-type solutions from
single-to dual-porosity and dual-permeability poromechanics. The solutions are pre-
sented in explicit analytical forms and account for arbitrary time-dependent external
loading conditions, e.g., cyclic and ramping. The derived analytical solutions and results
exhibit general behaviors characterized by two time scales. Stresses, pore pressures, and
displacements are plotted for various time scale ratios to illustrate the interplaying ef-
fects of permeability and stiffness contrast of both porous regions, in addition to the
interporosity exchange, on the overall responses of the system. Also, examples with re-
alistic loading conditions for laboratory testing or field simulation such as cyclic and
ramping are provided to demonstrate the engineering applications of the presented dual-
poroelastic formulation and solutions. �DOI: 10.1115/1.3172146�

Keywords: analytical solution, cylinder, dual-porosity, dual-permeability, fracture,
poroelastic, unconfined compression

1 Introduction
The isotropic poromechanics solutions for laboratory setups

with initial and boundary conditions on prepared samples easily
traverse the boundaries of various fields such as biomechanics and
geomechanics. The two-dimensional Mandel-type problem geom-
etry assumes a rectangular strip shape in Cartesian coordinate or
cylindrical disk samples in polar coordinate. In geomechanics,
such configurations are used in common uniaxial and triaxial test-
ings of porous rock specimens �1,2� or in simulating sudden stress
relief of a long core removed from subsurface wellbore �3�. Mean-
while, this problem geometry is equivalent to the popular uncon-
fined compression test in the biomechanics society, in particular,
for testing cartilages and bones �4,5�. Hence, distributions and
evolutions of stress, displacements, and pore pressure in the
samples under these setups and conditions are of important values
and have been investigated by many researchers.

In 1953, Mandel �6� presented the first solutions for the isotro-
pic consolidation of an unconfined soil layer using Biot’s theory
of poroelasticity �7�, demonstrating the nonmonotonic pore water
pressure response, known as the “Mandel–Cryer effect,” which is
a distinctive feature of the coupled consolidation theory. Kenyon
�8� provided solutions for transversely isotropic material but using
Terzaghi’s uncoupled consolidation theory �9�, which is a limiting
case of Biot’s poroelasticity. Later, Abousleiman et al. �10� ex-

tended Mandel’s original solution to the full transversely isotropic
case and provided the explicit expressions for stress, pore pres-
sure, displacements, and fluid flux. Recently, Hoang and Abousle-
iman �11� provided the poroviscoelastic solution accounting for
the intrinsic nature of the orthotropic viscoelastic matrix structures
of many porous materials such as articular cartilage. These poro-
mechanical solutions to the original Mandel’s problem have been
used as a benchmark for testing the validity of numerical codes of
poroelasticity �12–15�. In addition, the rectangular strip geometry
also matches one of the testing configurations of stiff clay samples
in geomechanics �1� or articular cartilages in biomechanics
�16,17�.

On the other hand, testing of solid cylindrical samples subjected
to load perturbation can be considered an axisymmetric Mandel-
type problem due to its radial symmetry and plane strain/
generalized plane strain nature �18�. Armstrong et al., �19� follow-
ing Mandel’s approach, derived the isotropic poroelastic solution
simulating the unconfined compression of articular cartilage disk
and showed results for step and ramp loadings. Independently in
the field of geomechanics, Abousleiman and Cui �2� published a
more general cylinder solution accounting for the transversely iso-
tropic nature of rock samples and arbitrary time-dependent load-
ing condition. The solution was later extended to incorporate the
effect of lateral confining stress and results for uniaxial and tri-
axial testing under ramp loading condition were demonstrated
�20�. Subsequently, Cowin and Mehrabadi �21� also gave the same
unconfined anisotropic poroelastic solution with results for bone
testing.

All existing analytical solutions for the generalized Mandel-
type problem model fluid-saturated porous medium as single-
porosity and single-permeability medium and thus fall short in
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describing the proper response of the well-known dual-porosity
bone structures �22� or the behaviors of fractured rocks modeled
as dual-porosity and dual-permeability porous media �23–25�. A
differentiating characteristic of dual-poroelastic medium is that
there are contrasting magnitudes in one or all material properties
such as porosity, permeability, stiffness, etc., in portions of the
medium compared with the rest. Therefore, a dual-porosity con-
tinuum approach, which has two distinct forms of porosity, per-
meability, and/or stiffness, one corresponding to the primary po-
rosity porous phase and the other corresponding to the secondary
porous phase, could be more appropriate for laboratory and field
application modelings.

This paper shows the derivations of the analytical solutions for
Mandel-type problems in isotropic dual-poroelastic media. By
noting the parallelism between plane strain and radial symmetry,
the solutions for strip and cylindrical samples are analogously
derived and expressed in closed form in the Laplace transform
domain. Corresponding analytical solutions in the time domain
are also derived and presented to complement the Laplace trans-
form domain solutions. The developed solutions describe the con-
solidation of a strip or circular disk sample under confined or
unconfined compression test setups. The cylinder or strip is sand-
wiched between two impermeable rigid frictionless plates sub-
jected to arbitrary time-dependent vertical loading and/or lateral
confining pressure. The results for stresses, pore pressures, and
displacements are plotted and compared with the corresponding
single-poroelastic counterparts to highlight the characteristic two-
time-scale behavior of the system manifested through the effects
of dual-porosity, dual-permeability, dual-stiffness, and interporos-
ity flow on the overall responses.

2 Dual-Porosity and Dual-Permeability Poroelastic
Modeling

At the macroscopic level, the dual-porous medium system is
considered to consist of two separate and distinct fluid-saturated
porous continua: One represents the primary porosity of the po-
rous medium occupying volume fraction vI of the total bulk vol-
ume and the other represents the secondary porosity of the porous
system occupying the remaining bulk volume fraction vII=1−vI.
In other words, each medium is generally assumed to be a porous
continuum possessing its own skeletal framework and material
properties. As a result, dual-porosity and dual-permeability ap-
proaches will exhibit dual pore-pressure evolutions when sub-
jected to stress and pressure perturbations. The two porous pri-
mary and secondary continua can communicate and may
exchange fluid mass.

In the dual-poroelastic constitutive approach, since there are
two distinct effective pore-pressure fields, the linear isotropic con-
stitutive equations accounting for the effect of fractures follow
naturally from the single-porosity poroelastic formulation as
�compression is positive� �26�

�ij =
3K̄

1 + v̄
��1 − 2v̄��ij + v̄�kk�ij� + ��̄IpI + �̄IIpII��ij �1�

�I = − �̄I�kk +
pI

M̄I
+

pII

M̄I,II
�2�

�II = − �̄II�kk +
pI

M̄I,II
+

pII

M̄II
�3�

where the superscript �N�=I , II refers to the primary and second-
ary porosity continua, respectively; �ij is the total stress tensor
and �ij is total strain tensor; �kk=�V /V denotes the overall bulk
volumetric strain; p�N� represents the pore-fluid pressure in the
primary or secondary porosity network; ��N� indicates the corre-
sponding change in local pore-fluid volume in a representative
unit volume of the combined dual-porosity system; �ij is the Kro-

necker delta; and the overbar denotes the overall dual-porosity
poroelastic material coefficients.

Equations �1�–�3� are direct extensions of single-porosity po-
roelastic to dual-porosity poroelastic in which fluid pressures and
deformations in each porous medium are coupled through their
constitutive relations. The formulation are characterized by effec-
tive material constants such as the overall drained elastic bulk

modulus and Poisson’s ratio �K̄ , v̄�, the effective pore-pressure
coefficients ��̄I , �̄II�, and the effective coupled Biot’s moduli

�M̄I ,M̄II ,M̄I,II�. These overall coefficients represent the combined
responses of the whole system and are related to the intrinsic
material constants and volume fractions of the constituting porous
phases �primary and secondary porosities� as presented in Appen-
dix A.

Other governing equations include the following:

• equilibrium equation �quasistatic�

��ij

�xj
= 0 �4�

• strain-displacement relation

�ij =
1

2
� ui

�xj
+

uj

�xi
� �5�

• continuity equations of the fluid phases

��I

�t
+

�qi
I

�xi
= ��pII − pI� �6�

��II

�t
+

�qi
II

�xi
= − ��pII − pI� �7�

• Darcy’s law

qi
�N� = − �̄�N��p�N�

�xi
�8�

in which xi represents the spatial coordinates; ui is the
displacement vector, qi

�N� denotes the specific fluid discharge
vector; �̄�N�=v�N���N�=v�N�k�N� /	�N� is the effective macro-
scopic mobility coefficient where k�N� is the intrinsic perme-
ability of the individual matrix or fracture porous region and
	�N� is the fluid dynamic viscosity. The right hand side of
Eqs. �6� and �7� signifies the interporosity fluid transfer,
which is assumed to be proportional to the pressure differ-
ential between the primary and secondary porosities �24�. �
is a transport coefficient depending on the characteristics of
the dual-permeability material such as the primary and sec-
ondary porosities’ geometry, distribution, and connectivity
�24,25�. It should be noted that by mass conservation law,
the interporosity exchange does not affect the change in to-
tal fluid content �=�I+�II in a saturated dual-porosity and
dual-permeability medium.

The above governing equations are combined to yield a number
of useful relations and field equations for obtaining analytical so-
lutions of quantities such as the dual pore-pressure fields and
stress/strain distributions. First, the equilibrium equation �4� com-
bined with the stress-strain-pressure equation �1� and the strain-
displacement relation �Eq. �5�� leads to the compatibility relation
of the system as

�2��kk +

̄I

Ḡ
pI +


̄II

Ḡ
pII� = 0 �9�

where �2 is the Laplacian differential operator and 
̄�N�= �̄�N��1
−2v̄� /2�1− v̄� and Ḡ=3K̄�1−2v̄� /2�1+ v̄�. Next, the diffusion
equations are obtained by substituting the fluid content constitu-
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tive equations ��2� and �3�� and Darcy’s law �Eq. �8�� into the fluid
continuity equations ��6� and �7�� as follows:

− �̄I��kk

�t
+

1

M̄I

�pI

�t
+

1

M̄I,II

�pII

�t
= �̄I�2pI + ��pII − pI� �10�

− �̄II��kk

�t
+

1

M̄I,II

�pI

�t
+

1

M̄II

�pII

�t
= �̄II�2pII − ��pII − pI� �11�

In Secs. 3 and 4, these governing constitutive and field equations
are applied to derive the analytical solutions for the response of
dual-porosity and dual-permeability porous media under plane
strain strip and generalized plane strain cylindrical geometries and
loading conditions.

3 Mandel’s Problem (Rectangular Strip)

3.1 Problem Descriptions. The original Mandel’s problem
involves an infinitely long rectangular specimen sandwiched be-
tween the top and bottom by two frictionless plates as illustrated
in Fig. 1. It is assumed that the y-axis is infinitely long and the
response along that direction is invariant. This geometry can be
represented by a perpendicular cross section �x-z� in a state of
plane strain, i.e., the displacement and fluxes vanish in the y di-
rection �perpendicular to the paper�. At time t=0+, a constant
compressive force 2F �per unit length� is applied to the rigid
plates at the top and bottom, respectively. The left and right edges
of the plates are stress-free and drained. The geometry and bound-
ary conditions imply that every horizontal plane is a plane of
folding symmetry. That is, horizontal planes remain horizontal
��zz=�zz�t��, fluid flow is parallel to the impermeable plates �qz

I

=qz
II=0�, and there are no shear stresses on the plane ��xz=0�. In

addition, the responses of all quantities are symmetric about the
centerline z-axis �f�x�= f�−x�� �6,10�.

Further in this work, the solutions account for external loading
conditions that are generalized to time-dependent loading applica-
tions, i.e., F=F�t�, Pc= Pc�t�, and po= po�t�, where Pc and po are
the confining stress and fluid pressure on the outer boundary �x
= �a�. Mathematically, the generalized boundary conditions are
expressed as

x = � a: �xx = Pc�t�, pI = pII = po�t�, �xz = 0 �12�

z = � b: �xz = qz
I = qz

II = 0, uz = uz�t� �13�

z = � b: �
−a

a

�zzdx = 2F�t� �14�

With the above boundary conditions, the governing equations can
be reduced to one-dimensional and all variables are, at most, func-

tions of x and t only. Specifically, the compatibility relation �Eq.
�9�� is simplified to

�2

�x2��kk +

̄I

Ḡ
pI +


̄II

Ḡ
pII� = 0 �15�

where �kk=�xx+�zz. Integrating twice and accounting for the sym-
metry about the centerline yields

�kk +

̄I

Ḡ
pI +


̄II

Ḡ
pII = Co�t� �16�

in which Co�t� is an integration constant depending only on time.
Eliminating the volumetric strain �kk in Eqs. �10� and �11� leads to
the reduced diffusion equations in terms of the dual fluid pres-
sures. In compact matrix form, they are expressed as

��A�
�

�t
− �D�

�2

�x2 + ����� pI

pII	 = � �̄I

�̄II	 �Co�t�
�t

, �17�

where the coefficient matrices �A�, �D�, and ��� are defined as

�A� = 

1

M̄I
+

�̄I
̄I

Ḡ

1

M̄I,II
+

�̄I
̄II

Ḡ

1

M̄I,II
+

�̄II
̄I

Ḡ

1

M̄II
+

�̄II
̄II

Ḡ
� �18�

�D� = ��̄I 0

0 �̄II
, ��� = �� 1 − 1

− 1 1

 �19�

The system composed of Eqs. �16� and �17� is sufficient for the
general solution of the three variables ��kk , pI , pII� and the subse-
quent stresses and displacements as derived in the following.

3.2 Analytical Solutions. The diffusion equation �17� is un-
coupled from the stress/strain fields and can be readily solved to
obtain the general expressions for pore pressures. Applying the
Laplace transform to the diffusion equation with the initial condi-
tion �I�x ,0+�=�II�x ,0+�=0 �fluid requires finite time to flow�
yields

�s�A� + ��� − �D�
d2

dx2�� p̃I

p̃II	 = � �̄I

�̄II	sC̃o �20�

where the tilde sign �̃ � denotes the corresponding quantity in
Laplace transform domain, s is the Laplace transform parameter,

and C̃o= C̃o�s�. The general solution of the above ordinary differ-
ential equation system is straightforward and admits the following
form:

p̃I�x,s� = C̃of I + C1
I cosh���Ix� + C1

II cosh���IIx� �21�

p̃II�x,s� = C̃of II + mIC1
I cosh���Ix� + mIIC1

II cosh���IIx� �22�

in which parts of the general solution involving sinh����N�x� have
been omitted due to symmetry requirement. In the above, C1

I �s�
and C1

II�s� are constants to be determined from boundary condi-
tions, �I and �II are eigenvalues of the coefficient matrix �Y�
= �D�−1�s�A�+ ����, and f I�s�, f II�s�, mI�s�, and mII�s� are coeffi-
cients defined as

�I,�II = �Y11 + Y22 � ��Y11 − Y22�2 + 4Y12Y21�/2 �23�

mI =
�I − Y11

Y12
, mII =

�II − Y11

Y12
�24�

Fig. 1 The Mandel’s problem geometry and setup for rectan-
gular strip specimens
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� f I

f II	 = s�s�A� + ����−1� �̄I

�̄II	 �25�

Next, using the equilibrium, constitutive, and strain-displacement
equations, it is easy to solve for the stresses and displacements in
terms of the fluid pressures as

�̃xx�s� = P̃c �26�

�̃zz�x,s� = 2hIC1
I cosh���Ix� + 2hIIC1

II cosh���IIx� + 2fC̃o − P̃c

�27�

2Ḡũx�x,s� = − 2hIC1
I sinh���Ix�

��I
− 2hIIC1

IIsinh���IIx�
��II

+ �P̃c − �2f

− K̄v�C̃o�x �28�

2Ḡũz�z,s� = �K̄vC̃o − P̃c�z �29�

where K̄v= K̄+4Ḡ /3, and the lumped coefficients f�s�, hI�s�, and
hII�s� are given as

f = 
̄If I + 
̄IIf II + K̄ + Ḡ/3 �30�

hI = 
̄I + mI
̄II, hII = 
̄I + mII
̄II �31�

The remaining three unknowns C̃o�s�, C1
I �s�, and C1

II�s� are deter-
mined from the fluid-pressure boundary conditions for pI and pII

at the edges x= �a and the vertical stress loading condition on
top and bottom at z= �b. Detailed derivations of this solution are
presented in Appendix B.

Hence, the complete solution in the Laplace transform domain
is obtained. It is obvious that the solutions developed in here have
the same functional forms as their single-poroelastic counterparts.
The differences arise in the additional set of similar terms ac-
counting for the secondary porosity coupled contributions. Re-
quiring the secondary porosity porous medium to shrink to zero,
all of the material parameters associated with the secondary po-
rosity porous medium vanish, and the current solution naturally
simplifies to a single-porosity solution as shown in Appendix C.

The newly developed dual-poroelastic solution in Laplace
transform domain is too complicated to be inverted analytically
back into the time domain. However, the time-domain solution
can be efficiently computed using numerical inversion methods
such as Stehfest’s algorithm �27�. Though robust, the numerical
inversion schemes may diverge and fall short in modeling certain
loading conditions such as cyclic or piecewise loading function
�28�. As a result, it is of benefit to obtain a true time-domain
analytical solution for using where the numerical inversion
method fails. Derivation of the general time-domain solution in
terms of an infinite series is presented in Appendix D. Explicit
expressions for three unconfined uniaxial loading cases such as
step loading, cyclic loading, and linear ramp loading are also sum-
marized in Appendix D. So far, the analysis applies only to strip
problem in Cartesian coordinate. It will be shown in Sec. 4 that
the extension to cylindrically axisymmetric problem is analo-
gously straightforward.

4 The Axisymmetric Mandel-Type Problem (Circular
Disk/Solid Cylinder)

4.1 Problem Descriptions. In this section, the compaction of
a saturated cylinder sandwiched between top and bottom imper-
meable, rigid, and frictionless plates �Fig. 2� is investigated. The
cross section of the cylinder is circular. A compressive force F�t�
is applied to the rigid plates at the top and bottom, respectively.
Additionally, a confining stress Pc�t� as well as a fluid pressure
po�t� can be applied on the lateral surface. In a common labora-

tory setting, the confining stress and fluid pressure at the outer
boundary �r=R� are often the same, i.e., Pc�t�= po�t�.

Mathematically, the boundary conditions are expressed in cy-
lindrical coordinate as

r = R: �rr = Pc�t�, pI = pII = po�t�, �r
 = �rz = 0 �32�

z = � H: �rz = �
z = qz
I = qz

II = 0, uz = uz�t� �33�

z = � H: �
0

R

r�zzdr =
F�t�
2�

�34�

With the aforementioned setup, the problem is obviously axisym-
metric providing that at any time the shear stresses and strains
�r
=�
z=0, �r
=�
z=0, and all other variables are independent of

. The geometry and boundary conditions imply that every hori-
zontal cross section is a plane of folding symmetry. That is, hori-
zontal planes remain horizontal ��zz=�zz�t��, fluid flow is in the
radial direction only �qz

I =qz
II=0�, and there are no shear stress on

the plane ��rz=0�.
Under such conditions, a generalized plane strain condition

naturally manifests in any cross-sectional plane �18�. Conse-
quently, the governing equations can be reduced to one-
dimensional and all variables are, at most, functions of r and t
only. Specifically, the compatibility relation �Eq. �9�� becomes

� �2

�r2 +
1

r

�

�r
���kk +


̄I

Ḡ
pI +


̄II

Ḡ
pII� = 0 �35�

where �kk=�rr+�

+�zz, �rr=�ur /�r, �

=ur /r, and �zz=�zz�t� re-
main to be determined. Integrating twice and seeking for bounded
solution yields

�kk +

̄I

Ḡ
pI +


̄II

Ḡ
pII = Co�t� �36�

in which Co�t� is an integration constant depending only on time.
The diffusion equation then becomes

��A�
�

�t
+ ��� − �D�� �2

�r2 +
1

r

�

�r
�
� pI

pII	 = � �̄I

�̄II	 �Co�t�
�t

�37�
Therefore, the diffusion equations are the same for strip and cir-
cular loadings in which the spatial Laplacian operator is changed
from �2=�2 /�x2 to �2=�2 /�r2+ �� /�r� /r. The formal solution to
the axisymmetric problem can be derived in a similar manner to
the strip loading problem as shown in Sec. 4.2.

4.2 Analytical Solutions. Analogous to the strip loading
problem, the Laplace transform general solutions for the fluid
pressures are first derived as

Fig. 2 The axisymmetric Mandel-type problem geometry and
setup for cylindrical or circular disk samples
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p̃I�r,s� = C̃of I + C1
I I0���Ir� + C1

III0���IIr� �38�

p̃II�r,s� = C̃of II + mIC1
I I0���Ir� + mIIC1

III0���IIr� �39�

in which I0 is the modified Bessel function of the first kind of
order zero, and all other parameters are the same as defined pre-
viously in the strip loading solution. Equations �38� and �39� also
imply that all variables must be finite at r=0. Making use of the
pressure expressions, other solutions for displacements, strains,
and stresses follow naturally from the constitutive equation �1� as

2Ḡũr�r,s� = − 2hIC1
I I1���Ir�

��I
− 2hIIC1

III1���IIr�
��II

− �Ḡ�̃zz + �f − K̄v�C̃o�r �40�

2Ḡ�̃rr�r,s� = − 2hIC1
I�I0���Ir� −

I1���Ir�
��Ir



− 2hIIC1

II�I0���IIr� −
I1���IIr�

��IIr

 − Ḡ�̃zz − �f − K̄v�C̃o

�41�

2Ḡ�̃

�r,s� = − 2hIC1
I I1���Ir�

��Ir
− 2hIIC1

III1���IIr�
��IIr

− Ḡ�̃zz − �f − K̄v�C̃o �42�

�̃rr�r,s� = 2hIC1
I I1���Ir�

��Ir
+ 2hIIC1

III1���IIr�
��IIr

+ fC̃o − Ḡ�̃zz �43�

�̃

�r,s� = 2hIC1
I�I0���Ir� −

I1���Ir�
��Ir



+ 2hIIC1

II�I0���IIr� −
I1���IIr�

��IIr

 + fC̃o − Ḡ�̃zz �44�

�̃zz�r,s� = 2hIC1
I I0���Ir� + 2hIIC1

III0���IIr� + �2f − K̄v�C̃o + 2Ḡ�̃zz

�45�

where f , hI, and hII are as defined in Eqs. �30� and �31�. In addi-

tion to C̃o�s�, C1
I �s�, and C1

II�s�, the fourth undetermined quantity
in the solution is the axial strain �̃zz�s�. All of these coefficients
and variables are determined using boundary conditions of verti-
cal stress and dual pressure fields. Again, detailed derivations are
presented in Appendix E.

It is easy to verify that the above solution reduces to the single-
poroelastic solid cylinder solution as presented by Cui and
Abousleiman �20� by allowing the secondary porosity porous me-
dium to vanish. It should be noted that Cui and Abousleiman �20�
expressed the solution using a different set of material coefficients
such as undrained and drained Poisson ratios �vu ,v� and storativ-
ity coefficient S. The reduction to single-poroelastic solution in
the Laplace transform domain is illustrated in Appendix F. For
completeness, the corresponding time-domain solution in terms of
infinite series is also derived and presented in Appendix G.

5 Results and Discussions
In this section, results of the above derived dual-porosity and

dual-permeability poroelastic solutions for strip and cylindrical
geometries are presented and compared with the single-
poroelastic solutions. Let Pc�t�= po�t�=0, resulting in an uncon-
fined uniaxial testing condition. The original Mandel’s problem
�strip geometry� exhibits symmetry about the Cartesian coordinate
plane and plane strain whereas the cylinder problem displays axi-
symmetry and generalized plane strain condition. Thus, it is of

interest to investigate the dual-poroelastic behaviors of the two
problems in a parallel manner to highlight the different responses
in the two configurations.

5.1 Data for Numerical Analyses. The dual-poroelastic solu-
tions are used herein to simulate the response of naturally frac-
tured rock formations such as fractured shales in which the high
permeability fractures are regarded as the secondary porosity po-
rous phase �II�. To demonstrate the solutions, the same set of data
for a Gulf of Mexico shale �20� are adopted in this analysis as

K = 1100 MPa, G = 760 MPa, � = 0.96, M = 9100 MPa

� = 0.14, k = 5 � 10−8 darcy, Ks = 27.6 GPa

Kf = 1744 MPa

The above data are assumed to be the properties of the nonfrac-
tured porous matrix phase �I� in the dual-porosity and dual-
permeability model. The porous fracture region is expected to be
much more compliant than the matrix one; thus, the bulk modulus
of the porous fracture is assumed to be smaller than those of the
porous rock matrix. In this example, to highlight the contrast in
stiffness, the same Poisson’s ratio is assumed for both matrix and
fracture systems while the fracture’s bulk modulus is specified to
be 50 times smaller without loss of generality: vI=vII=0.22 and
KII=KI /50=22 MPa. The local fracture porosity �II is the frac-
ture pore volume divided by the fracture total bulk volume. Since
the majority of the fracture are porous flow channels, the fracture
porosity are usually close to 1. On the other hand, the fracture
volume fraction vII is the fracture bulk volume divided by the total
bulk volume of the combined matrix-fracture formation. As such
the fracture volume fractions depend on the fracture’s spacing and
geometry and usually is a small number less than 5% bulk vol-
ume, as reported in the literatures �29�. Here, fracture porosity and
volume fraction are chosen as �II=0.95 and vII=5%. Subse-
quently, the fracture poroelastic parameters �II and MII can be
determined using Eqs. �A7� and �A8�, assuming that the same
fluid is permeating the pore spaces Kf

I =Kf
II=Kf, 	I=	II

=0.01 Pa s �viscosity�, and the porous matrix and porous fracture
skeletons are comprised of the same mineral materials Ks

I =Ks
II

=Ks.
The local or intrinsic fracture permeability is the macroscopic

permeability that is assigned to the fracture system in a given
volume of rock, and thus dependent on the fracture width and
spacing. For isotropic modeling, the bulk fracture permeability
can be estimated based on a simple sugar cube model �three or-
thogonal sets of fractures� as �29�

kII = �2/3� � 8.35 � 106 � w4/d

where w and d are the average fracture width and spacing in
centimeters, respectively. Hence, assuming w=0.004 cm and d
=0.3 cm leads to a fracture permeability of approximately 0.005
darcy �5�10−15 m2�. Correspondingly, the interporosity flow co-
efficient can be estimated to be proportional to the matrix mobility
kI adjusted by a geometric factor depending on fracture spacing d
and volume fraction �24�, e.g., �=60�vII�I /d2�1.67
�10−7 �MPa s�−1.

For the dual-porosity and dual-permeability approaches to ap-
ply, the nominal length scale of the testing sample must be at least
an order of magnitude larger than the average fracture spacing to
ensure continuum requirement of a representative elementary vol-
ume �30�. Therefore, the strip specimen is taken to have cross
section of 2�a�b�=6�10 cm while the cylinder’s diameter and
height are also 2�R�H�=6�10 cm. A vertical/axial force of
Fstrip=3�104 N /m or Fcylinder=2.83�103 N /m is applied,
which gives the same average vertical stress of �o=1 MPa for
both testing configurations.
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5.2 Dual-Porosity and Dual-Permeability Poroelastic
Responses. In this section, the dual-porosity and dual-
permeability poroelastic predictions are analyzed in conjunction
with the single-porosity and single-permeability responses. For
ease of physical interpretation, the analysis is carried out for step
loading condition. The results for other loading applications are
discussed later.

The dual-poroelastic formulation reduces to two diffusion equa-
tions �Eqs. �10� and �11�� each of which is associated with an
apparent diffusion coefficient. The analytical solution shows that
there are two eigenvalues �1

I and �II, which physically correspond
to the dual pressure-diffusion coefficients in the porous matrix and
fracture continua, respectively. These eigenvalues indicate the
characteristic time scales equal to the characteristic length �lateral
width a for strip or radius R for cylinder� squared divided by the
diffusion coefficients. Due to the contribution of interporosity
flow, these apparent diffusion coefficients are not constant but
time-dependent. Nevertheless, the eigenvalues—calculated by ne-
glecting interporosity term—can be used to estimate the relative
time scale among the two diffusion processes. From the above
data, the reduced apparent diffusion coefficients c�N�=s /��N� and
their associated characteristic times tc

�N�=a2 /c�N� or tc
�N�=R2 /c�N�

are as follows:

cI = 9.20 � 10−4 cm2/s, cII = 2.10 cm2/s

tc
I = 9800 s � 2.7 hours, tc

II = 4.3 s

Hence, fluid diffusion process that takes only seconds in the
fracture will require hours in the matrix. Figures 3 and 4 show
results of pore-pressure profile for both geometries under step
loading condition at various times. The fast pressure diffusion in
the fracture is prominently displayed, e.g., the fracture’s fluid
pressure almost dissipates completely after 10 s while the matrix
fluid pressure is still substantial. Figures 5 and 6 show the corre-
sponding vertical and axial stress distributions in the samples. The
results for stress and pore pressures display typical nonmonotonic
poroelastic behaviors in terms of the Mandel–Cryer effect. As
time progresses, the pore pressure near the edges must dissipate
due to access to drainage, effectively making the specimen more
compliant near the sides and stiffer in the center region. Therefore,

there is a load transfer to the middle region such that the pressure
continues to rise after its initial jump. At long time, the initial
pore-pressure buildup decreases due to subsequent fluid diffusion.

Figures 7 and 8 illustrate the histories of pressures in the center
of the specimens. Similar to the single-poroelastic response, the
dual-poroelastic matrix and fracture pressures show typical non-
monotonic poroelastic behaviors as the pore pressures continue to
rise after initial jumps due to Skempton’s effect. From the solu-
tions of pore pressures, the initial pore-pressure rises per unit
volumetric stress applied are computed as p

0+
�N�

=��N� /2h for rect-

angular strip and p
0+
�N�

=��N� / �4h− K̄v� for cylinder ���N� and h are
defined in Eqs. �D4� and �D14�, respectively�. For single-
poroelastic, these values simplify to p0+ =B�1+vu� /3 for strip and
p0+ =B /3 for cylinder where B is Skempton’s pore-pressure coef-

Fig. 3 Pore-pressure profile for strip geometry at various
times

Fig. 4 Pore-pressure profile for cylindrical geometry at vari-
ous times

Fig. 5 Vertical stress profile for strip geometry at various
times
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ficient and vu is the undrained Poisson’s ratio. Therefore, the load
application on cylinder geometry is expected to generate less ini-
tial pore-pressure elevation than strip configuration. For this data
set, the values of these pore pressure rises are calculated as �p0+

I

=0.458, p0+
II =0.495, p0+ =0.448� for strip and �p0+

I =0.31, p0+
II

=0.33, p0+ =0.31� for cylinder. Hence, the matrix and fracture con-
tinua exhibit higher initial pore-pressure elevations. This is rea-
sonable since the combined matrix-fracture system is more com-
pliant than the single-porosity �intact� rock. Clearly, there are two
distinct responses, especially in the matrix pressure, signifying the
dual time scales as estimated above. The first pressure buildup
after about 1 s corresponds to the characteristic time of the frac-
ture region. Being more fluid permeable, the porous fracture
quickly dissipates this buildup and falls below the matrix pressure.

As time progresses, the matrix pressure seeks to build up non-
monotonically again with characteristic time tc

I =9800 s–2.7 h
while supplying flow into the fracture via interporosity fluid ex-
change. In fact, fluid loss due to interporosity exchange with the
fracture negates the second pressure buildup in the matrix. To
visualize the contribution of the interporosity process, the corre-
sponding matrix pressure without interporosity is also plotted in
Figs. 7 and 8. The separation between the matrix pressure with
and without interporosity flow denotes the magnitude of inter-
porosity exchange.

Figures 9 and 10 show the time evolution of the vertical and
lateral displacements for both geometries. First, the dual-
poroelastic predictions display similar consolidation features as
single-poroelastic counterpart, i.e., lateral contraction after initial
expansion as displayed in Fig. 10. However, the dual-poroelastic
clearly exhibits dual responses in the consolidation process. For
example, the samples consolidate vertically to an initial constant

Fig. 6 Vertical stress profile for cylindrical geometry at vari-
ous times

Fig. 7 Pore-pressure histories in the center of the rectangular
strip

Fig. 8 Pore-pressure histories in the center of the cylinder

Fig. 9 Vertical displacement histories at the top of the sample
for both strip and cylindrical geometries
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value after all the fluid has been drained out in the fracture �10 s�
then compact to a final value when pressure buildup in the matrix
diffuse completely �1200 s� as shown in Fig. 9. Additionally, the
dual-poroelastic results naturally predict larger displacement than
single-poroelastic ones since the presence of fractures typically
renders the rock more compressible.

Similarly, Figs. 11 and 12 show the histories of vertical stress
developed at the center �x=0 or r=0� and at the edges of a strip
�x= �a� or the outer boundary of the cylinder �r=R�. Again, a
transient dual response is observed. At the center, there are dual
buildups of vertical stress with initial magnitude of 10% and later
1.5% above the average applied stress. At the edges, the stress
level at small time is less than single-permeability solution due to
faster draining of the supporting fluid pressure. As time elapses,
the stress everywhere in the sample evolves through two stages

before converging to the equilibrium applied stress value.
Obviously, the general behavior of the dual-poroelastic system

is characterized by two time scales. These two time scales are
functions of the dual permeabilities, dual porosities and stiffness,
and interporosity exchange. In the following, the effects of inter-
porosity flow, permeability, and stiffness contrast on the overall
response are investigated based on cylindrical sample calcula-
tions.

5.3 Effects of Interporosity Exchange. Figure 13 shows the
matrix and fracture pressure at the cylinder center �r=0� for vari-
ous values of interporosity exchange coefficient � at constant ra-
tios of permeability kII /kI=105 and stiffness KI /KII=50. For no
interflow, the matrix pressure has the widest separation with the
fracture and mimicking the single-poroelastic counterpart after the

Fig. 10 Lateral displacement histories on the outside of the
sample for both strip and cylindrical geometries

Fig. 11 Vertical stress histories at x=0 and x=a for rectangu-
lar strip

Fig. 12 Axial stress histories at r=0 and r=R for cylinder

Fig. 13 Pore-pressure histories at the cylinder’s center r=0 for
different interporosity flow coefficients while keeping constant
permeability contrast kII /kI=105 and stiffness ratio KI /KII=50
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initial buildup with the fracture pressure. The higher the interflow,
the closer the matrix and fracture pressure converge to each other
and the less significant the dual responses become. At large
enough interflow magnitude ��=1.50�10−2 MPa−1 s−1�, the ma-
trix and fracture pressure are the same, which renders the system
single response in terms of the fracture time scale. Figure 14 plots
the corresponding vertical displacement history. �=0 reveals two
stages of consolidation whereas �=1.50�10−2 MPa−1 s−1 only
exhibits a fast and single approach to final consolidation. In other
words, interporosity exchange equilibrates the dual responses or
reduces the effect of time scale contrast.

5.4 Effects of Permeability Contrast. While interporosity
flow shrinks the difference between dual responses, the permeabil-

ity contrast directly affect the time scale ratio. Figure 15 and 16
show the dual pressures and vertical displacement, respectively,
for various values of permeability ratios kII /kI �keeping constant
permeability in matrix and varying fracture’s� at constant inter-
flow �=1.67�10−7 MPa−1 s−1 and stiffness contrast KI /KII=50.
It is seen that the higher the permeability ratio, the more pro-
nounced the characteristic dual-response exhibits.

5.5 Effects of Stiffness Contrast. Analogously, Figs. 17 and
18 depict the dual pressures and consolidation for different values
of stiffness ratios KI /KII at constant interflow �=1.67
�10−7 MPa−1 s−1 and permeability contrast kII /kI=105. The stiff-
ness ratio defined in this way counters the effect of permeability
contrast. Thus, it can be observed in Fig. 17 that the higher the

Fig. 15 Pore-pressure histories at the cylinder’s center r=0 for
different permeability ratios while keeping constant stiffness
contrast KI /KII=50 and interporosity flow �=1.67Ã10−7

Fig. 17 Pore-pressure histories at the cylinder’s center r=0 for
different bulk modulus ratios while keeping constant perme-
ability contrast kII /kI=105 and interporosity flow �=1.67Ã10−7

Fig. 14 Vertical displacement histories at the top of the cylin-
der for different interporosity flow coefficients while keeping
constant permeability contrast kII /kI=105 and stiffness ratio
KI /KII=50

Fig. 16 Vertical displacement histories at the top of the cylin-
der for different permeability ratios while keeping constant
stiffness contrast KI /KII=50 and interporosity flow �=1.67
Ã10−7
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stiffness ratio, the less distinct the dual response becomes. The
pressure responses also converge to the single-poroelastic one.
However, the magnitude of vertical consolidation is different be-
tween dual- and single-poroelastic as shown in Fig. 18. In brief,
the stiffness contrast modifies not only the relative time scale but
also the magnitude of the final consolidation whereas permeability
contrast and interporosity exchange only modified the time scales
but does not affect final consolidation magnitude.

5.6 Time-Dependent Loading. So far, the results are shown
only for step loading condition. In this section, the responses due
to time-dependent loading situations such as cyclic loading, linear
ramp loading, and/or combination are briefly demonstrated. For
brevity, only the results for cylinder geometry are illustrated here-
after. The responses for rectangular strip sample should be inter-
preted analogously.

Figure 19 shows the pressure evolution at the center of the
specimens under a cyclic axial stress with magnitude of 1 MPa
and a period of 2 s �0.5 Hz�: �o�t�=F�t� /�R2=sin��t� for the first
five cycles. As expected, the pore pressures also show cyclic be-
haviors in which the pressure in the fracture is the highest because
the loading period is smaller than the characteristic time scale of
fracture �tc

I �4 s�. On the other hand, Fig. 20 demonstrates the
pore-pressure response due to a linear ramp loading for three dif-
ferent buildup rates with characteristic times to of 10 s, 100 s, and
1000 s. The pressurization process is such that the average axial
stress reaches 10 MPa at to time and remains constant at this level
afterward. Evidently, the fast diffusion speed in fractured medium
together with interporosity flow allow significantly less pore-
pressure buildup in the sample. Finally, superposition of the basic
loading solutions allows modeling of more complex loading pro-
cesses. For example, combination of the above cyclic and linear
ramp results yields the pore-pressure fluctuation during the first 28
s for the loading functions depicted in the inset of Fig. 21.

Fig. 18 Vertical displacement histories at the top of the cylin-
der for different bulk modulus ratios while keeping constant
permeability contrast kII /kI=105 and interporosity flow �=1.67
Ã10−7

Fig. 19 Pore-pressures histories at the cylinder’s center r=0
under cyclic loading

Fig. 20 Pore-pressures histories at the cylinder’s center r=0
under different linear ramp loading rates

Fig. 21 Pore-pressure fluctuations at the cylinder’s center „r
=0… through times under combined cyclic and linear ramp load-
ings „the cyclic loading period is T=2 s and ramping charac-
teristic time is to=10 s…
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6 Conclusions
The generalized analytical poromechanical solutions have been

derived for the two-dimensional Mandel-type problem geometries
in both rectangular strip and cylindrical disk setups. The solutions
are presented in explicit analytical forms and account for arbitrary
time-dependent external loading conditions, e.g., cyclic and ramp-
ing. Analyses show that pore-pressure generations are higher dur-
ing early loading intervals but dissipate faster through the course
of time. The dual-porous system exhibits typical dual time scale
responses. However, due to the different characteristic time scales
among primary porosity, secondary porosity, interporosity flow,
and external loading functions, the behaviors of the dual-porous
system can vary significantly. As such, the corresponding porome-
chanical analytical solutions presented herein are general and find
their applications spanning both geomechanic and biomechanic
fields. Particularly in the petroleum industry, this solution allows
geomechanicians the ability to study the effect of fractures on the
overall behaviors of naturally fractured rocks and reservoirs. In
biomechanics, the same solutions can also be applied to study the
response of bones well-known for their multiporosity makeup.
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Nomenclature

Capital Letters
A � poroelastic coefficient matrix �Eq. �18��
B � Skempton pore-pressure coefficient

Co � constant of integration �Eqs. �16� and �36��
C1

I ,C1
II � general solution constants to be determined

from boundary conditions
D � transport coefficient matrix �Eq. �19��
F � vertically applied load
G � shear modulus
H � half height of cylinder sample

I0 , I1 � modified Bessel function of the first kind of
order zero and one

J0 ,J1 � Bessel function of the first kind of order zero
and one

K � bulk modulus
Kf � fluid modulus
Ks � solid grain bulk modulus
Kv � elastic modulus �K+4G /3�
M � Biot modulus
Pc � confining stress
Q � function of Laplace parameter s as defined in

Eq. �D20� or Eq. �G10�
R � radius of cylinder sample

X̄ � overall dual-poroelastic coefficient
�X=K ,G ,M ,� ,
�

Y � lumped coefficient matrix

Lowercase Letters
a � half width of rectangular strip sample
b � half height of rectangular strip sample
d � fracture spacing

dcylinder � coefficient for cylinder solution in Laplace
transform domain

dstrip � coefficient for strip solution in Laplace trans-
form domain

f � coefficient as defined in Eq. �30�

f I , f II � solution coefficients in Laplace transform do-
main �Eq. �25��

h � coefficient as defined in Eq. �D14�
hI ,hII � solution coefficients in Laplace transform do-

main �Eq. �31��
m � �2n-1�� /2a, Fourier transform parameters

mI ,mII � solution coefficients in the Laplace transform
domain �Eq. �24��

n � 1,2,3,…, terms in Fourier or Hankel series
summation

qi � specific fluid discharge vector
r � radial coordinate of cylinder sample
s � Laplace transform parameter

sn
I ,sn

II � coefficients as defined in Eq. �D8�
t � time

to � characteristic time of linear ramp loading
ux � horizontal displacement
uz � vertical or axial displacement
ur � radial displacement

vI ,vII � volume fraction of primary or secondary po-
rosity porous phase

w � fracture width
wn

I ,wn
II � coefficients as defined in Eq. �D6�

zn
I ,zn

II � coefficients as defined in Eq. �D7�

Greek Symbols
� � coefficient as defined in Eq. �D11�
� � coefficient as defined in Eq. �D15�
� � interporosity flow coefficients
� � time function as defined in Eq. �D19� or Eq.

�G9�
� � coefficient as defined in Eq. �D16�
� � effective pore-pressure coefficient

�n � nth positive roots of J0��R�=0
�ij � Kronecker delta
�ij � strain tensor
�kk � volumetric strain
�rr � radial strain
�

 � tangential strain
�xx � horizontal strain
�zz � vertical or axial strain

�I ,�II � porosity
�I ,�II � coefficients as defined in Eq. �D4�


 � poroelastic constant �3�G / �3K+4G��
�I ,�II � coefficients as defined in Eq. �D5�
�I ,�II � mobility coefficient

�i � roots of Q�s�=1
	 � fluid viscosity
v � Poisson ratio

vu � undrained Poisson ratio

 � angular coordinate

�ij � stress tensor
�o � average applied vertical or axial stress
�rr � radial stress
�

 � tangential stress
�xx � horizontal stress
�zz � vertical or axial stress

� � dummy integration variable
� � angular frequency of cyclic loading

�I ,�II � eigenvalues of matrix Y �Eq. �23��
�I ,�II � fluid content

Superscripts
I � primary porosity porous medium �matrix�

II � secondary porosity porous medium �fracture�
N � I or II

I, II � cross coupling dual-poroelastic coefficient
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Appendix A: Dual-Porosity Material Coefficients
Following Berryman and Pride �31�, the effective constitutive

coefficients for the dual-porosity composite material can be iden-
tified in terms of the individual constituent’s properties as

�̄I = �I K̄ − KII

KI − KII �A1�

�̄II = �II KI − K̄

KI − KII �A2�

1

M̄I
= vIC� I − � �IKII

KI − KII�2� vI

KI +
vII

KII −
1

K̄
� −

��̄I�2

K̄
�A3�

1

M̄I,II
=

�I�IIKIKII

�KI − KII�2� vI

KI +
vII

KII −
1

K̄
� −

�̄I�̄II

K̄
�A4�

1

M̄II
= vIIC� II − � �IIKI

KI − KII�2� vI

KI +
vII

KII −
1

K̄
� −

��̄II�2

K̄
�A5�

where vI and vII=1-vI are the bulk volume fractions of the pri-
mary and secondary porosity media. The individual material co-
efficients are given as

C� �N� =
���N��2

K�N� +
1

M�N� �A6�

��N� = 1 −
K�N�

Ks
�N� �A7�

M�N� =
�Ks

�N��2

Ks
�N��1 + ��N��Ks

�N�/Kf
�N� − 1�� − K�N� �A8�

in which Ks
�N� is grain modulus, ��N�=Vpore

�N� /V�N� is the local po-
rosity; and Kf

�N� is the pore-fluid modulus �inverse of fluid com-

pressibility�. The overall bulk modulus K̄ can be estimated based
on the individual bulk module K�N� by some averaging scheme,

e.g., the harmonic average where K̄= �KIKII� / �vIIKI+vIKII�. It can
be seen that when the secondary porosity medium vanishes, i.e.,
vII→0, the material coefficients reduce naturally to the single-
porosity counterparts.

Appendix B: Rectangular Strip Dual-Poroelastic
Laplace Transform Domain Solution

The general solution has been listed in Sec. 3.2. Details of the
derivations for stresses, displacements, and constants of integra-
tion are presented in here. First, integrating the equilibrium Eq.
�4� in the x direction and making use of the confining stress
boundary conditions at the two edges x= �a leads to

�xx = Pc�t� �B1�

As such, the following stress-strain-pressures relations can be ob-
tained from the constitutive equation �1�:

Pc�t� = 2Ḡ�xx + �K̄ − 2Ḡ/3��kk + �̄IpI + �̄IIpII �B2�

�zz = 2Ḡ�zz + �K̄ − 2Ḡ/3��kk + �̄IpI + �̄IIpII �B3�

Eliminating the strain using Eq. �16� gives the expression for ver-
tical stress and subsequent displacements in terms of pore pres-
sures as

�zz = 2
̄IpI + 2
̄IIpII + 2�K̄ + Ḡ/3�Co�t� − Pc�t� �B4�

2Ḡux = − 2� �
̄IpI + 
̄IpI�dx + �Pc�t� − �K̄ − 2Ḡ/3�Co�t��x

�B5�

2Ḡuz = �K̄vCo�t� − Pc�t��z �B6�
Substitution of the pressure Eqs. �21� and �22� leads to the explicit
general solutions Eqs. �26�–�29�. The boundary conditions for
fluid pressures at the two edges x= �a and vertical stress at the
top z=b are

p̃I�x=a = C̃of I + C1
I cosh���Ia� + C1

II cosh���IIa� = p̃o �B7�

p̃II�x=a = C̃of II + mIC1
I cosh���Ia� + mIIC1

II cosh���IIa� = p̃o

�B8�

�
−a

a

�̃zzdx = 2�2hIC1
I sinh���Ia�

��I
+ 2hIIC1

IIsinh���IIa�
��I

+ �2fC̃o − P̃c�a
 = 2F̃ �B9�

Equations �B7�–�B9� are solved simultaneously for C̃o�s�, C1
I �s�,

and C1
II�s� as

C̃o�s� = �− 2hI�1 − mII���II sinh���Ia�cosh���IIa�

+ 2hII�1 − mI���I cosh���Ia�sinh���IIa�
	 p̃o

dstrip

+ �mI − mII���I��II cosh���Ia�cosh���IIa���F̃ + aP̃c�/dstrip

�B10�

C1
I �s� = �+ 2af�1 − mII���I��II cosh���IIa�

+ 2hII�f I − f II���I sinh���IIa�
	 p̃o

dstrip

− �f II − f ImII���I��II cosh���IIa���F̃ + aP̃c�/dstrip

�B11�

C1
II�s� = �− 2af�1 − mI���I��II cosh���Ia�

− 2hI�f I − f II���II sinh���Ia�
	 p̃o

dstrip

+ �f II − f ImI���I��II cosh���Ia���F̃ + aP̃c�/dstrip

�B12�

dstrip�s� = − 2hI�f II − f ImII���II sinh���Ia�cosh���IIa� + 2hII�f II

− f ImI���I cosh���Ia�sinh���IIa� + 2af�mI

− mII���I��II cosh���Ia�cosh���IIa� �B13�

Appendix C: Rectangular Strip Reduced Single-
Poroelastic Laplace Transform Domain Solution

Requiring the secondary porosity porous medium to shrink to
zero, all of the material parameters associated with the secondary
porosity porous medium vanish and the remaining parameters re-
duce to those of the primary porosity porous medium as follows:

vII → 0 ⇒ �̄II,M̄I,II,M̄II,
̄II, � → 0

K̄ → KI, Ḡ → GI, �̄I → �I, M̄I → MI, 
̄I → 
I

As a result, the diffusion equation for the secondary porosity po-
rous medium becomes identically zero and the solution becomes

p̃ = C̃of I + C1
I cosh���Ix� �C1�
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�̃zz = 2
IC1
I cosh���Ix� + 2fC̃o − P̃c �C2�

2Ḡũx = − 2
IC1
I sinh���Ix�

��I
+ �P̃c − �2f − Kv

I �C̃o�x �C3�

�I = s/cI, cI = �I/� 1

MI +
�I
I

GI � �C4�

f I = �I/� 1

MI +
�I
I

GI �, f = 
If I + KI + GI/3 �C5�

C̃o�s� = �− 2
I sinh���Ia�p̃o + ��I cosh���Ia���F̃ + aP̃c��/dstrip

�C6�

C1
I �s� = �2af��Ip̃o + f I��I��F̃ + aP̃c��/dstrip �C7�

dstrip�s� = − 2
If I sinh���Ia� + 2af��I cosh���Ia� �C8�

which is the corresponding generalized single-poroelastic solu-
tion. For the special case of unconfined step loading, i.e., F�t�
=F�H�t�; Pc�t�= po�t�=0, Wang �3� showed that application of
Laplace transform inversion theorem reproduce the exact single-
poroelastic solution presented by Mandel �6� and Abousleiman et
al. �10�.

Appendix D: Rectangular Strip Dual-Poroelastic Time
Domain Solution

The analytical solution can be derived in terms of infinite series
using the combined Laplace and Fourier transform techniques.
Introducing the finite cosine Fourier transform pair defined as �32�

Pn
�N��n,t� =�

0

a

p�N��x,t��cos�mx�dx

�D1�

p�N��x,t� =
2

a�
n=1

�

Pn
�N��n,t��cos�mx�

where n=1,2 , . . . and m= �2n-1�� / �2a� are the Fourier transform
parameters, the solution for the Laplace–Fourier transformed pres-
sures are

� P̃n
I

P̃n
II	 =

�− 1�n+1

m
�Zn,s�−1� �̄I

�̄II	sC̃o + �Zn,s�−1�D��m�p̃o

m�p̃o
	
�D2�

in which �Zn,s�−1 is the inverse matrix of �Zn,s�=s�A�+ ���
+m2�D� and the fluid-pressure boundary condition at the two
edges x= �a has been used. To facilitate the inverse Laplace
transform, the above expression is rearranged as

P̃n
�N��n,s� =

�− 1�n+1

m

��N��s + wn
�N��

�s + sn
I ��s + sn

II�
��sC̃o − Co�0�� + Co�0��

+ m
��N��s + zn

�N��
�s + sn

I ��s + sn
II�

p̃o �D3�

where the new coefficients are defined as

�I = �A22�̄
I − A12�̄

II�/det�A�, �II = �A11�̄
II − A21�̄

I�/det�A�
�D4�

�I = �A22D11 − A12D22�/det�A�, �II = �A11D22 − A21D11�/det�A�
�D5�

wn
I = ��̄I�m2D22 + �� + �̄II��/��I det�A��

�D6�
wn

II = ��̄II�m2D11 + �� + �̄I��/��II det�A��

zn
I = �D11�m2D22 + �� + D22��/��I det�A��

�D7�
zn

II = �D22�m2D11 + �� + D11��/��II det�A��

sn
�N� = − �− B � ���/�2 det�A�� �D8�

det�A� = A11A22 − A12A21 �D9�

B = �A11 + A22 + A12 + A21�� + m2�D11 + D22� �D10�

� = B2 − 4 det�A����m2D11 + ���m2D22 + �� − �2� �D11�

The Laplace inversion is carried out using the convolution theo-

rem, i.e., �f �g��t�=�0
t f���g�t−��d�. In this case, we choose f̃�s�

=sC̃o−Co�0�→ f�t�=dC /dt. Then the pressure general expression
in time and space domain is

p�N��x,t� = ��N�2

a�
n=1

�
�− 1�n+1

m ��
0

t
1

sn
I − sn

II��sn
I − wn

�N��e−sn
I �t−��

− �sn
II − wn

�N��e−sn
II�t−���

dCo���
d�

d�

+ Co�0�
�sn

I − wn
�N��e−sn

I t − �sn
II − wn

�N��e−sn
IIt

sn
I − sn

II 	cos�mx�

+ ��N�2

a�
n=1

�

m��
0

t �sn
I − zn

�N��e−sn
I �t−�� − �sn

II − zn
�N��e−sn

II�t−��

sn
I − sn

II

�po���d�	cos�mx� �D12�

Substitution of the above into Eq. �B4�, the general expression for
vertical stress is given as

�zz�x,t� = 2hC�t� − Pc�t�

−
4

a�
n=1

� ��− 1�n+1

m �
0

t

��n
I sn

I e−sn
I �t−��

− �n
IIsn

IIe−sn
II�t−���C���d�	cos�mx�

+
4

a�
n=1

� �m�
0

t

��n
I e−sn

I �t−��

− �n
IIe−sn

II�t−���po���d�	cos�mx� �D13�

where the new coefficients are defined as follows:

h = 
̄I�I + 
̄II�II + K̄ + Ḡ/3 �D14�

�n
�N� =


̄I�I�sn
�N� − wn

I � + 
̄II�II�sn
�N� − wn

II�
�sn

I − sn
II�

�D15�

�n
�N� =


̄I�I�sn
�N� − zn

I � + 
̄II�II�sn
�N� − zn

II�
�sn

I − sn
II�

�D16�
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The arbitrary function of time Co�t� remains to be determined.
Applying the vertical stress boundary condition along the top of
the sample, z= �b �Eq. �14�� gives

Co�t� =
F�t� + aPc�t�

2ah

−
2

a2h�
n=1

� ��− 1�n+1�
0

t

��n
I e−sn

I �t−�� − �n
IIe−sn

II�t−���po���d�	
+

2

a2h�
n=1

� � 1

m2�
0

t

��n
I sn

I e−sn
I �t−�� − �n

IIsn
IIe−sn

II�t−���C���d�	
�D17�

This is an integral equation with separable kernels having general
solution �formula No. 19 of Sec. 2.2.1 in Ref. �33��.

Co�t� = ��t� −�
0

t

�
i=1

� � e�i�t−��

Q��s = �i�

����d� �D18�

in which the functions ��t� and Q�s� are defined as

��t� =
F�t� + aPc�t�

2ah

−
2

a2h�
n=1

� ��− 1�n+1�
0

t

��n
I e−sn

I �t−�� − �n
IIe−sn

II�t−���po���d�	
�D19�

Q�s� =
2

a2h�
n=1

�
1

m2� �n
I sn

I

s + sn
I −

�n
IIsn

II

s + sn
II� �D20�

where Q��s� denotes dQ�s� /ds, and �i are roots of the equation
1−Q�s�=0.

As a result, Co�t� can assume various forms depending on the
type of external loading functions F�t�, po�t�, and Pc�t�. Here, the
explicit solutions of Co�t� and pore pressures for some special
unconfined uniaxial loading conditions such as step loading, cy-
clic loading, and linear ramp loading are summarized as follows:

• step loading �original Mandel’s problem�: po�t�= Pc�t�=0;
F�t�=F�H�t�

Co�t� =
F

2ah�1 + �
i=1

� � �1 − e�it�
�iQ��s = �i�


	 �D21�

p�N��x,t� =
��N�

2h

F

a

2

a�
n=1

�
�− 1�n+1

m�sn
I − sn

II���sn
I − wn

�N��e−sn
I t − �sn

II − wn
�N��e−sn

IIt + �
i=1

� � �sn
I − wn

�N���e�it − e−sn
I t�

�sn
I + �i�Q���i�

−
�sn

II − wn
�N���e�it − e−sn

IIt�
�sn

II + �i�Q���i�

	cos�mx� �D22�

• cyclic loading: po�t�= Pc�t�=0; F�t�=F� sin��t�

Co�t� =
F

2ah�sin��t� − �
i=1

� ��e�it − � cos��t� − �i sin��t�
��i

2 + �2�Q��s = �i�

	 �D23�

p�N��x,t� = −
��N�

2h

F�

a

2

a�
n=1

�
�− 1�n+1

m�sn
I − sn

II�
cos�mx���sn

I − wn
�N��

sn
I e−sn

I t − sn
I cos��t� − � sin��t�
�sn

I �2 + �2

− �sn
II − wn

�N��
sn

IIe−sn
IIt − sn

II cos��t� − � sin��t�
�sn

II�2 + �2 + �
i=1

� � �sn
I − wn

�N���i�e�it − e−sn
I t�

�sn
I + �i���i

2 + �2�Q���i�
−

�sn
II − wn

�N���i�e�it − e−sn
IIt�

�sn
II + �i���i

2 + �2�Q���i�



+ �
i=1

� � �sn
I − wn

�N�����isn
I + �2��e−sn

I t − cos��t�� + ��sn
I − �i�sin��t��

��sn
I �2 + �2���i

2 + �2�Q���i�



− �
i=1

� � �sn
II − wn

�N�����isn
II + �2��e−sn

IIt − cos��t�� + ��sn
II − �i�sin��t��

��sn
II�2 + �2���i

2 + �2�Q���i�

	 �D24�

• linear ramp loading: po�t�= Pc�t�=0; F�t�=F��tH�t�− �t− to�H�t− to�� / to

Co�t� =
F�t�
2ah

−
F

2ah�
i=1

�
1

to�i
2Q��s = �i�

��e�it − 1 − ��it��H�t� + �e�i�t−to� − 1 − �i�t − to��H�t − to�� �D25�
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p�N��x,t� =
��N�

2h

F

ato

2

a�
n=1

�
�− 1�n+1

m�sn
I − sn

II�
cos�mx���sn

I − wn
�N��

1 − e−sn
I t − �1 − e−sn

I �t−to��H�t − to�
sn

I

− �sn
II − wn

�N��
1 − e−sn

IIt − �1 − e−sn
II�t−to��H�t − to�

sn
II + �

i=1

� � �sn
I − wn

�N���sn
I e�it + �ie

−sn
I t − sn

I − �i�
sn

I �sn
I + �i��iQ���i�



− �

i=1

� � �sn
II − wn

�N���sn
IIe�it + �ie

−sn
IIt − sn

II − �i�
sn

II�sn
II + �i��iQ���i�


 + �
i=1

� � �sn
I − wn

�N���sn
I e�i�t−to� + �ie

−sn
I �t−to� − sn

I − �i�H�t − to�
sn

I �sn
I + �i��iQ���i�



− �

i=1

� � �sn
II − wn

�N���sn
IIe�i�t−to� + �ie

−sn
II�t−to� − sn

II − �i�H�t − to�
sn

II�sn
II + �i��iQ���i�


	 �D26�

Thus, the final time-domain solutions for all quantities are
completed by substituting the suitable expressions of Co�t�
and fluid pressures into the general equations ��B4�–�B6��.

Appendix E: Solid Cylinder Dual-Poroelastic Laplace
Transform Domain Solution

The general solution for fluid pressures has been derived in
Eqs. �38� and �39�. Here, the detailed derivations for other quan-
tities are illustrated.

First, the radial displacement is obtained by integration noting
that �kk= �1 /r�� �rur� /�r+�zz.

2Ḡur = −
2

r� �
̄IpI + 
̄IIpII�rdr + Ḡ�Co�t� − �zz�t��r �E1�

Other expressions for strains and stresses follow naturally from
the constitutive equation �1� as

2Ḡ�rr =
2

r2� �
̄IpI + 
̄IIpII�rdr − 2�
̄IpI + 
̄IIpII�

+ Ḡ�Co�t� − �zz�t�� �E2�

2Ḡ�

 = −
2

r2� �
̄IpI + 
̄IIpII�rdr + Ḡ�Co�t� − �zz�t�� �E3�

�rr =
2

r2� �
̄IpI + 
̄IIpII�rdr + �K̄ + Ḡ/3�Co�t� − Ḡ�zz�t� �E4�

�

 = −
2

r2� �
̄IpI + 
̄IIpII�rdr + 2�
̄IpI + 
̄IIpII� + �K̄ + Ḡ/3�Co�t�

− Ḡ�zz�t� �E5�

�zz = 2�
̄IpI + 
̄IIpII� + �K̄ − 2Ḡ/3�Co�t� + 2Ḡ�zz�t� �E6�

Substitution of the pressure equations ��38� and �39�� into the
above leads to the explicit general solutions as expressed in Eqs.
�40�–�45�. The applicable boundary conditions for this geometry
and setting are the fluid-pressure and confining stress boundary
conditions at the cylinder’s outer surface r=R, and the axial stress
loading condition on the top and bottom.

p̃I�r=R = C̃of I + C1
I I0���IR� + C1

III0���IIR� = p̃o �E7�

p̃II�r=R = C̃of II + mIC1
I I0���IR� + mIIC1

III0���IIR� = p̃o �E8�

�̃rr�r=R = 2hIC1
I I1���IR�

��IR
+ 2hIIC1

III1���IIR�
��IIR

+ fC̃o − Ḡ�̃zz = P̃c

�E9�

�
0

R

�̃zzrdr = 2hIC1
I RI0���IR�

��I
+ 2hIIC1

IIRI0���IIR�
��II

+ ��2f − K̄v�C̃o + 2Ḡ�̃zz�
R2

2
=

F̃

2�
�E10�

Equations �E7�–�E10� are solved simultaneously for C̃o�s�, C1
I �s�,

C1
II�s�, and �̃zz as

C̃o�s� = �− 4hI�1 − mII���III1���IR�I0���IIR�

+ 4hII�1 − mI���II0���IR�I1���IIR�
	 p̃o

dcylinder
+ �mI

− mII�R��I��III0���IR�I0���IIR���F̃/2�R2 + P̃c�/dcylinder

�E11�

C1
I �s� = �+ �2f − K̄v/2��1 − mII�R��I��III0���IIR�

+ 4hII�f I − f II���II1���IIR��
p̃o

dcylinder

− �f II − f ImII�R��I��III0���IIR���F̃/2�R2 + P̃c�/dcylinder

�E12�

C1
II�s� = �− �2f − K̄v/2��1 − mI�R��I��III0���IR�

− 4hI�f I − f II���III1���IR��
p̃o

dcylinder

+ �f II − f ImI�R��I��III0���IR���F̃/2�R2 − P̃c�/dcylinder

�E13�

dcylinder�s� = − 4hI�f II − f ImII���III1���IR�I0���IIR�

+ 4hII�f II − f ImI���II0���IR�I1���IIR�

+ �2f − K̄v/2��mI − mII�R��I��III0���IR�I0���IIR�
�E14�

Ḡ�̃zz�s� = − 2hIC1
I I1���IR�

��IR
− 2hIIC1

III1���IIR�
��IIR

+ F̃/2�R2

− �f − K̄v/2�C̃o �E15�

Therefore, the general Laplace transform solution for cylinder is
complete.
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Appendix F: Solid Cylinder Reduced Single-Poroelastic
Laplace Transform Domain Solution

Requiring the secondary porosity porous medium to shrink to
zero, the diffusion equation for the secondary porosity porous me-
dium becomes identically zero and the solution becomes

p̃ = C̃of I + C1
I I0���Ir� �F1�

2GIũr = − 2
IC1
I I1���Ir�

��I
− �GI�̃zz + �f − Kv

I �C̃o�r �F2�

2GI�̃rr = − 2
IC1
I�I0���Ir� −

I1���Ir�
��Ir


 − GI�̃zz − �f − Kv
I �C̃o

�F3�

2GI�̃

 = − 2
IC1
I I1���Ir�

��Ir
− GI�̃zz − �f − Kv

I �C̃o �F4�

�̃rr = 2
IC1
I I1���Ir�

��Ir
+ fC̃o − GI�̃zz �F5�

�̃

 = 2
IC1
I�I0���Ir� −

I1���Ir�
��Ir


 + fC̃o − GI�̃zz �F6�

�̃zz = 2
IC1
I I0���Ir� + �2f − Kv

I �C̃o + 2GI�̃zz �F7�

where the reduced coefficients �I, f I, and f are the same as defined
in Eqs. �C4� and �C5�. The constants determined from boundary
conditions simplify to

C̃o�s� = �− 4
II1���IR�p̃o − R��II0���IR���F̃/2�R2 + P̃c��/dcylinder

�F8�

C1
I �s� = ��2f − Kv

I /2�R��Ip̃o + f IR��I��F̃/2�R2 + P̃c��/dcylinder

�F9�

dcylinder�s� = 4
If II1���IR� − �2f − Kv
I /2�R��II0���IR�

�F10�

GI�̃zz�s� = − 2
IC1
I I1���IR�

��IR
+ F̃/2�R2 − �f − Kv

I /2�C̃o

�F11�
which is the corresponding generalized single-poroelastic solution
that matches the solution as published by Cui and Abousleiman
�20�.

Appendix G: Solid Cylinder Dual-Poroelastic Time So-
lution

Due to the cylindrical geometry of the problem, the finite Han-
kel transform is used instead of the Fourier transform as in the
strip loading problem. Introducing the finite Hankel transform pair
defined as �32�

Pn
�N���n,t� =�

0

R

rp�N��r,t��J0��nr�dr

�G1�

p�N��r,t� =
2

R2�
n=1

�

Pn
�N���n,t��

J0��nr�
J1��nR�2

where �n are positive roots of J0��R�=0. The solution for the
Laplace–Hankel transform pressures are

� P̃n
I

P̃n
II	 = �Zn,s�−1� �̄I

�̄II	RJ1��nR�
�n

�sC̃o�

+ �Zn,s�−1�D��nRJ1��nR�� p̃o

p̃o
	 �G2�

in which �Zn,s�−1 is now the inverse matrix of �Zn,s�=s�A�+ ���
+�n

2�D� and the fluid-pressure boundary conditions at r=R has
been used. Similarly, to facilitate the inverse Laplace transform
the above equation is rearranged as

P̃n
�N���n,s� =

��N��s + wn
�N��

�s + sn
I ��s + sn

II�
��sC̃o − Co�0�� + Co�0��

RJ1��nR�
�n

+
��N��s + zn

�N��
�s + sn

I ��s + sn
II�

�nRJ1��nR� � p̃o �G3�

where all of the parameters ��N�, ��N�, sn
�N�, wn

�N�, and zn
�N� are the

same as defined previously in Eqs. �D4�–�D11� in which the co-
efficient m is replaced by �n. Applying convolution theorem, the
pressure general expression in time and space domain is

p�N��r,t� = ��N� 2

R2�
n=1

� ��
0

t
1

sn
I − sn

II��sn
I − wn

�N��e−sn
I �t−��

− �sn
II − wn

�N��e−sn
II�t−���

dCo���
d�

d�

+ Co�0�
�sn

I − wn
�N��e−sn

I t − �sn
II − wn

�N��e−sn
IIt

sn
I − sn

II 	 RJ0��nr�
�nJ1��nR�

+ ��N� 2

R2�
n=1

� ��
0

t �sn
I − zn

�N��e−sn
I �t−�� − �sn

II − zn
�N��e−sn

II�t−��

sn
I − sn

II

�po���d�	�nRJ0��nr�
J1��nR�

�G4�

Substituting the above pressure expression into Eqs. �E4� and
�E6�, the general solutions for radial and vertical stresses are
given as

�rr�r,t� = − �Ḡ�zz�t� − hCo�t��

−
4

R2�
n=1

� ��
0

t

��n
I sn

I e−sn
I �t−�� − �n

IIsn
IIe−sn

II�t−���Co���d�	
�

RJ1��nr�
�n

2rJ1��nR�
+

4

R2�
n=1

� ��
0

t

��n
I e−sn

I �t−��

− �n
IIe−sn

II�t−���po���d�	RJ1��nr�
rJ1��nR�

�G5�

�zz�r,t� = �2Ḡ�zz�t� + �2h − K̄v�Co�t�� −
4

R2�
n=1

� ��
0

t

��n
I sn

I e−sn
I �t−��

− �n
IIsn

IIe−sn
II�t−���Co���d�	 RJ0��nr�

�nJ1��nR�

+
4

R2�
n=1

� ��
0

t

��n
I e−sn

I �t−��

− �n
IIe−sn

II�t−���po���d�	�nRJ0��nr�
J1��nR�

�G6�

where h, �n
�N�, and �n

�N� are defined in Eqs. �D14�–�D16�. The
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remaining undetermined items are Co�t� and �zz�t�. Applying the
lateral confining stress and vertical loading boundary conditions
gives

Ḡ�zz�t� = hCo�t� − Pc�t� +
4

R2�
n=1

� ��
0

t

��n
I e−sn

I �t−��

− �n
IIe−sn

II�t−���po���d�	 −
4

R2�
n=1

� ��
0

t

��n
I sn

I e−sn
I �t−��

− �n
IIsn

IIe−sn
II�t−���Co���d�	 1

�n
2 �G7�

�2h − K̄v/2�Co�t� = �F�t�/2�R2 + Pc�t�� −
8

R2

��
n=1

� ��
0

t

��n
I e−sn

I �t−�� − �n
IIe−sn

II�t−���po���d�	
+

8

R2�
n=1

� ��
0

t

��n
I sn

I e−sn
I �t−��

− �n
IIsn

IIe−sn
II�t−���Co���d�	 1

�n
2 �G8�

Again, the integral equation �G8� has the same form and general

solution as shown in the strip geometry �Eq. �D18�� as follows:

Co�t� = ��t� −�
0

t

�
i=1

� � e�i�t−��

Q��s = �i�

����d�

in which the functions ��t� and Q�s� are redefined as

�2h − K̄v/2���t� = �F�t�/2�R2 + Pc�t�� −
8

R2

��
n=1

� ��
0

t

��n
I e−sn

I �t−�� − �n
IIe−sn

II�t−���po���d�	
�G9�

�2h − K̄v/2�Q�s� =
8

R2�
n=1

�
1

�n
2� �n

I sn
I

s + sn
I −

�n
IIsn

II

s + sn
II� �G10�

where Q��s� denotes dQ�s� /ds and �i are roots of the equation
1−Q�s�=0.

Once Co�t� is determined, it can be substituted into Eq. �G7� to
obtain �zz�t�. Similar to the strip loading case, the explicit solu-
tions of Co�t� and pore pressures for some special unconfined
uniaxial loading conditions such as step loading, cyclic loading,
and linear ramp loading are given as follows:

• step loading �original Mandel’s problem�: po�t�= Pc�t�=0;
F�t�=F�H�t�

Co�t� =
1

�4h − K̄v�

F

�R2�1 + �
i=1

� � �1 − e�it�
�iQ��s = �i�


	 �G11�

p�N��r,t� =
��N�

4h − K̄v

F

�R2 �
2

R2�
n=1

�
1

sn
I − sn

II��sn
I − wn

�N��e−sn
I t − �sn

II − wn
�N��e−sn

IIt

+ �
i=1

� � �sn
I − wn

�N���e�it − e−sn
I t�

�sn
I + �i�Q���i�

−
�sn

II − wn
�N���e�it − e−sn

IIt�
�sn

II + �i�Q���i�

	 RJ0��nr�

�nJ1��nR�
�G12�

• cyclic loading: po�t�= Pc�t�=0; F�t�=F�sin��t�

Co�t� =
1

4h − K̄v

F

�R2�sin��t� − �
i=1

� ��e�it − � cos��t� − �i sin��t�
��i

2 + �2�Q��s = �i�

	 �G13�

p�N��r,t� = −
��N�I

4h − K̄v

F�

�R2

2

R2�
n=1

�
1

�sn
I − sn

II�
RJ0��nr�

�nJ1��nR� *��sn
I − wn

�N��
sn

I e−sn
I t − sn

I cos��t� − � sin��t�
�sn

I �2 + �2

− �sn
II − wn

�N��
sn

IIe−sn
IIt − sn

II cos��t� − � sin��t�
�sn

II�2 + �2 + �
i=1

� � �sn
I − wn

�N���i�e�it − e−sn
I t�

�sn
I + �i���i

2 + �2�Q���i�
−

�sn
II − wn

�N���i�e�it − e−sn
IIt�

�sn
II + �i���i

2 + �2�Q���i�



+ �
i=1

� � �sn
I − wn

�N�����isn
I + �2��e−sn

I t − cos��t�� + ��sn
I − �i�sin��t��

��sn
I �2 + �2���i

2 + �2�Q���i�



− �
i=1

� � �sn
II − wn

�N�����isn
II + �2��e−sn

IIt − cos��t�� + ��sn
II − �i�sin��t��

��sn
II�2 + �2���i

2 + �2�Q���i�

	 �G14�

• linear ramp loading: po�t�= Pc�t�=0; F�t�=F��tH�t�− �t− to�H�t− to�� / to

Co�t� =
1

4h − K̄v

F�t�
�R2 −

1

4h − K̄v

F

�R2

1

to
�
i=1

�
1

�i
2Q���i�

��e�it − 1 − ��it��H�t� + �e�i�t−to� − 1 − �i�t − to��H�t − to�� �G15�
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p�N��r,t� =
��N�

4h − K̄v

F

�R2to

2

R2�
n=1

�
1

�sn
I − sn

II�
RJ0��nr�

�nJ1��nR���sn
I − wn

�N��
1 − e−sn

I t − �1 − e−sn
I �t−to��H�t − to�

sn
I

− �sn
II − wn

�N��
1 − e−sn

IIt − �1 − e−sn
II�t−to��H�t − to�

sn
II + �

i=1

� � �sn
I − wn

�N���sn
I e�it + �ie

−sn
I t − sn

I − �i�
sn

I �sn
I + �i��iQ���i�



− �

i=1

� � �sn
II − wn

�N���sn
IIe�it + �ie

−sn
IIt − sn

II − �i�
sn

II�sn
II + �i��iQ���i�


 + �
i=1

� � �sn
I − wn

�N���sn
I e�i�t−to� + �ie

−sn
I �t−to� − sn

I − �i�H�t − to�
sn

I �sn
I + �i��iQ���i�



− �

i=1

� � �sn
II − wn

�N���sn
IIe�i�t−to� + �ie

−sn
II�t−to� − sn

II − �i�H�t − to�
sn

II�sn
II + �i��iQ���i�


	 �G16�

The complete time-domain results are computed by substituting the suitable expressions for Co�t� and fluid pressures into the
general solution equations ��E1�–�E6��.
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Analytical and Experimental
Studies of the Mechanics of
Deformation in a Solid With a
Wavy Surface Profile
The analytical solution is obtained for a semi-infinite linear elastic solid with a sinu-
soidal, “wavy” surface profile subject to applied strain. The amplitude A of a deformed
wavy surface is related to the initial amplitude A0 and the applied strain �a through the
simple expression A�A0�1��a�. This relation is confirmed independently by finite ele-
ment analyses and experimental measurements of strained wavy poly(dimethylsiloxane)
surfaces. Analytical solutions are also obtained for a wavy solid subject to stretch and
lateral displacement. �DOI: 10.1115/1.3132184�

1 Introduction

Controlled buckling of thin films on prestrained elastomeric
substrates has the potential to be a critical fabrication route for
technologies in many areas of study, such as stretchable electron-
ics �1–11�, micro- and nanometrology methods �12,13�, tunable
phase optics �14,15�, and pattern formation at the micro-/
nanoscale �16–19�. The mechanics of such systems have been
investigated extensively �20–26�. Although these systems have
many attractive features, one disadvantage is that compressive
strains in the buckled films, established during fabrication, pro-
vide film stretchability at the expense of reduced compressibility.
Recently, an alternative approach was presented in which the thin
stiff films were deposited directly onto a compliant substrate with
prefabricated sinusoidal, “wavy” surface relief features �27�. Use
of such wavy systems would avoid any initial film strain, there-
fore achieving both high stretchability and compressibility.

The objective of this paper is to develop an analytical method
for studying the wavy substrate under applied strains or “stretch.”
Such a framework would provide a foundation for future studies
of stretchability and compressibility of stiff thin films on compli-
ant substrates. Analytical methods are described in Sec. 2, leading
to the solution for surface profile deformation of a bare, wavy
substrate subject to uniaxial tension. In Sec. 3 this solution is
compared with experimental and numerical results. Finally, Sec. 4
presents another analytical solution for a wavy substrate subject to
lateral displacements; an analysis directly related to the system of
a stiff thin film on a compliant substrate.

2 Theory
Figure 1 shows a semi-infinite solid with a wavy surface profile

y=A0 cos kx subject to an applied strain �a in the x direction,
where A0 is the amplitude, k=2� /�, and � is the wavelength. The
solid is linear elastic with Young’s modulus E and Poisson’s ratio
�. A new coordinate system

� = x, � = y − A0 cos kx �1�

is introduced such that the wavy boundary y=A0 cos kx of the
solid becomes a straight line �=0 in the �� ,�� plane. The solid in
Fig. 1 is thus transformed to a semi-infinite solid �−	
�
	 ,
−	
�
0� in the new coordinate system. The partial derivatives
with respect to the physical coordinates �x ,y� can be written in
terms of �� ,�� as

�

�x
=

�

��
+ A0k sin k�

�

��
,

�

�y
=

�

��
�2�

To determine the change in profile amplitude under applied
strains, we first consider displacements in the x and y directions,
ux and uy, respectively. In terms of these displacements, the strains
are given by

�xx =
�ux

�x
=

�ux

��
+ A0k sin k�

�ux

��

�yy =
�uy

�y
=

�uy

��
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2�xy =
�ux

�y
+

�uy

�x
=

�ux

��
+

�uy

��
+ A0k sin k�

�uy

��
�3�

Substrate stresses can be obtained via the linear elastic relation for
plain-strain deformation

�xx =
E

�1 + ���1 − 2��
��1 − ���xx + ��yy�

�yy =
E

�1 + ���1 − 2��
��1 − ���yy + ��xx�

�xy =
E

1 + �
�xy �4�

For plane-stress deformation, E and � are replaced by E�1
+2�� / �1+��2 and � / �1+��, respectively.

Substitution of Eqs. �3� and �4� into the equilibrium equation
�5�, given as

��xx

��
+ A0k sin k�

��xx

��
+

��xy

��
= 0

��xy

��
+ A0k sin k�

��xy

��
+

��yy

��
= 0 �5�

yields the following two partial differential equations for ux and
uy:

�1 − 2��� �2ux

��2 +
�2ux

��2 � +
�

��
� �ux

��
+

�uy

��
� + A0k sin k��4�1

− ��
�2ux

�� � �
+

�2uy

��2 � + 2�1 − ��A0k2 cos k�
�ux

��
+ 2�1

− ��A0
2k2 sin2 k�

�2ux

��2 = 0

�1 − 2��� �2uy

��2 +
�2uy

��2 � +
�

��
� �ux

��
+

�uy

��
� + A0k sin k��2�1

− 2��
�2uy

�� � �
+

�2ux

��2 � + �1 − 2��A0k2 cos k�
�uy

��
+ �1

− 2��A0
2k2 sin2 k�

�2uy

��2 = 0 �6�

Boundary conditions for the system include a traction-free top
surface of the solid such that

n · ��xx �xy

�xy �yy
� = 0 at � = 0 �7�

where n represents the unit normal on the surface and is in the
direction �A0k sin kx ,1�. This direction is equivalent to
�A0k sin k� ,1�. Simplifying these boundary conditions yield the
expressions

A0k sin k��xx + �xy = 0, A0k sin k��xy + �yy = 0 at � = 0

�8�

Remote boundary conditions require �xx 	�→−	=�a due to the ap-
plied strain and vanishing tractions, i.e., �xy =0 and �yy =0.

For small amplitude �A0��, or equivalently A0k�1�, the per-
turbation method is used to write the displacements as

ux = ux
�0� + �A0k�ux

�1� + �A0k�2ux
�2� + ¯

uy = uy
�0� + �A0k�uy

�1� + �A0k�2uy
�2� + ¯ �9�

By sorting terms according to the power of A0k, substitution of
Eq. �9� into the equilibrium equation �6� and boundary condition
�8� leads to the following partial differential equations and bound-
ary conditions for ux

�i� and uy
�i� �i=0,1 ,2 , . . .� under plane-strain

deformation.
For zeroth �leading� order,

�1 − 2��� �2ux
�0�

��2 +
�2ux

�0�

��2 � +
�

��
� �ux

�0�

��
+

�uy
�0�

��
� = 0

�1 − 2��� �2uy
�0�

��2 +
�2uy

�0�

��2 � +
�

��
� �ux

�0�

��
+

�uy
�0�

��
� = 0 �10a�

�ux
�0�

��
+

�uy
�0�

��
= 0, �

�ux
�0�

��
+ �1 − ��

�uy
�0�

��
= 0, at � = 0

�10b�

�ux
�0�

��
+

�uy
�0�

��
= 0, �

�ux
�0�

��
+ �1 − ��

�uy
�0�

��
= 0, at � → − 	

�10c�

�ux
�0�

��
= �a, at � → − 	 �10d�

For first order,

�1 − 2��� �2ux
�1�

��2 +
�2ux

�1�

��2 � +
�

��
� �ux

�1�

��
+

�uy
�1�

��
�

= − sin k��4�1 − ��
�2ux

�0�

�� � �
+

�2uy
�0�

��2 � − 2�1 − ��k cos k�
�ux

�0�

��

�1 − 2��� �2uy
�1�

��2 +
�2uy

�1�

��2 � +
�

��
� �ux

�1�

��
+

�uy
�1�

��
�

= − sin k��2�1 − 2��
�2uy

�0�

�� � �
+

�2ux
�0�

��2 � − �1 − 2��k cos k�
�uy

�0�

��

�11a�

�ux
�1�

��
+

�uy
�1�

��
= −

sin k�

�1 − 2���2�1 − ��
�ux

�0�

��
+

�uy
�0�

��
� and

�1 − ��
�uy

�1�

��
+ �

�ux
�1�

��
= −

sin k�

2
� �ux

�0�

��
+ �1 − 2��

�uy
�0�

��
� at � = 0

�11b�

�ux
�1�

��
+

�uy
�1�

��
= − sin k�

�uy
�0�

��
and

�1 − ��
�uy

�1�

��
+ �

�ux
�1�

��
= − � sin k�

�ux
�0�

��
at � → − 	 �11c�

For second order,

Fig. 1 A solid with wavy surface subject to the applied strain
εa. The wavelength is � and initial amplitude is A0.
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�1 − 2��� �2ux
�2�

��2 +
�2ux

�2�

��2 � +
�

��
� �ux

�2�

��
+

�uy
�2�

��
�

= − 2�1 − ��k cos k�
�ux

�1�

��
− sin k��4�1 − ��

�2ux
�1�

�� � �
+

�2uy
�1�

��2 �
− 2�1 − ��sin2 k�

�2ux
�0�

��2

�1 − 2��� �2uy
�2�

��2 +
�2uy

�2�

��2 � +
�

��
� �ux

�2�

��
+

�uy
�2�

��
�

= − �1 − 2��k cos k�
�uy

�1�

��
− sin k��2�1 − 2��

�2uy
�1�

�� � �
+

�2ux
�1�

��2 �
− �1 − 2��sin2 k�

�2uy
�0�

��2 �12a�

�ux
�2�

��
+

�uy
�2�

��
= −

sin k�

�1 − 2��� �uy
�1�

��
+ 2�1 − ��

�ux
�1�

��

+ 2�1 − ��sin k�
�ux

�0�

��
�

�1 − ��
�uy

�2�

��
+ �

�ux
�2�

��
= −

sin k�

2
� �ux

�1�

��
+ �1 − 2��

�uy
�1�

��

+ �1 − 2��sin k�
�uy

�0�

��
� at � = 0

�12b�

�ux
�2�

��
+

�uy
�2�

��
= − sin k�

�uy
�1�

��

�1 − ��
�uy

�2�

��
+ �

�ux
�2�

��
= − � sin k�

�ux
�1�

��
at � → − 	

�12c�

The solution of the zeroth-�leading� order of Eq. �10� is

ux
�0� = �a�, uy

�0� = −
�

1 − �
�a� �13�

The corresponding stress field is the plane-strain tension in the x
direction, �xx

�0�=E / �1−�2��a, �yy
�0�=0, and �xy

�0�=0.
First-order solutions of Eq. �11� are

ux
�1� =

− 2 + 2� − k�

1 − �

�a

k
ek� sin k�

uy
�1� = �− 1 + 2� + k�

1 − �

�a

k
ek� −

�

1 − �

�a

k
�cos k� +

�a

k
�14�

The corresponding stress fields are �xx
�1�=−E�aek� / �1−�2��2

+k��cos k�, �yy
�1�=E�aek� / �1−�2�k� cos k�, and �xy

�1�=
−E�aek� / �1−�2��1+k��sin k�, which decrease exponentially
away from the top surface �=0.

The solution to the second-order equation �12� is

ux
�2� =

�a sin 2k�

2k�1 − ��
��3 − 2� + 2k��e2k� − �3 − 2� + k��ek��

uy
�2� =

�a cos 2k�

2k�1 − ��
�− 2�� + k��e2k� + �2� + k��ek��

+
2� + k�

2k�1 − ��
�aek� −

�

k�1 − ��
�a �15�

with a corresponding stress field of

�xx
�2� =

E�a

2�1 − �2�
�2e2k� cos 2k��3 + 2k�� − ek��3 + k���1

+ cos 2k���

�yy
�2� =

E�a

2�1 − �2�
�− 2e2k��1 + 2k��cos 2k� + ek��1 + k���1

+ cos 2k���
and

�xy
�2� =

E�a sin 2k�

2�1 − �2�
�4e2k��1 + k�� − ek��2 + k���

These fields decrease exponentially away from the top surface �
=0.

Conditions ux=uy =0 at �=�=0 are imposed to eliminate the
rigid body motion. Displacement along the x and y directions on
the solid’s top surface can be obtained by substituting Eqs.
�13�–�15� into Eq. �9�

ux�� = 0� = �ax − 2A0�a sin kx

uy�� = 0� = A0�a�1 − cos kx� �16�
This gives the amplitude of deformed wavy profile as

A = A0�1 − �a� �17�

The error is of order O��aA0
2 /�2� as compared with unity, i.e., the

amplitude can be written as A=A0�1−�a+�a ·O�A0
2 /�2��.

3 Results and Experimental Procedures
Samples having a wavy surface profile were fabricated in a

sequential process in which features designed on a rigid silicon
template were imprinted into an elastomeric polymer such as
poly�dimethylsiloxane� �PDMS�. The critical steps of this fabrica-
tion process are illustrated in Fig. 2�a�. To generate the silicon
master, plasma-enhanced chemical vapor deposition �PECVD�
formed a thin �200 nm� silicon nitride layer on a Si �100� wafer
�SQI, Inc.�. Conventional photolithography and plasma etching
formed patterns of alternating lines and spaces, creating an etch
mask in the nitride layer. After stripping the remaining photore-
sist, the Si �100� was anisotropically etched in a hot �90°C� iso-
propyl alcohol buffered 25% potassium hydroxide �KOH� solution
for 35 min. Removing the nitride mask with concentrated hydrof-
luoric acid �49% HF� then exposed the underlying silicon surface
which had saw-tooth relief features similar to the first panel of
Fig. 2�a�. A thin layer of photoresist �MicroChem S1805� was spin
cast at 3500 rpm for 90 s onto the silicon, converting the saw-
tooth relief into an approximately sinusoidal shape able to be rep-
licated in a compliant material like PDMS.

Two consecutive molding steps were used to reproduce the
smoothed surface profile of the silicon/photoresist structure in a
thin �300 
m� layer of PDMS supported by a glass substrate. The
inverse of the saw-tooth profile was generated in a layer �75 
m�
of negative tone photoresist �SU-8 50; MicroChem Corp.� by
pressing the glass/PDMS element into liquid SU-8 on a thin
�100 
m� plastic substrate �PET�, flood exposing the system with
ultraviolet light ��=365 nm� for 30–40 s from both the top and
bottom, followed by a 5 min hotplate bake at 65°C. After sepa-
rating the PDMS and cured SU-8, spin-casting a layer of SU-8 2
�MicroChem Corp.� diluted to 1

2 volume fraction with SU-8 thin-

Journal of Applied Mechanics JANUARY 2010, Vol. 77 / 011003-3

Downloaded 04 May 2010 to 171.66.16.45. Redistribution subject to ASME license or copyright; see http://www.asme.org/terms/Terms_Use.cfm



ner onto the molded SU-8 smoothed the relief valleys. A final
molding step was used to replicate the fully smoothed, sinusoidal
surface in a PDMS substrate of specified thickness �
2 mm�, as
in Fig. 2�b�.

The mechanics of these structures were examined through sur-
face profilometry at various levels of strain. Rectangular samples
�20�5�2 mm3� having wavy surface profiles were clamped at
each end in a custom designed tensioning stage, which was used
to uniaxially strain the samples. At small strains �
6%�, changes
in the profile amplitude and wavelength were measured using a
profilometer �Dektak 3030�. Figure 3 compares experimentally
measured amplitudes A �denoted by squares� versus the applied
strain �a for a wavy PDMS substrate �E=2 MPa, �=0.48� �28�
with a wavelength �=49 
m and initial amplitudes of A0=6.7,
8.4, and 9.7 
m. The analytical solution of Eq. �17�, also shown
in Fig. 3 and denoted by the solid lines, agrees well with the
experiments for A0=6.7 and 8.4 
m, but is slightly lower than
the experimental data for A0=9.7 
m.

Finite element methods were also used to study a wavy PDMS
profile subject to stretching. For simulations, we used the plane-

strain element CPE4 in the ABAQUS finite element program �29�,
and linear geometry was used since the strain level is very small
in the current study. Figure 4 shows the basic finite element mesh
with a much finer mesh at the wavy surface; the smallest element
size is 0.5 
m. Numerical results from the finite element analysis
are shown by circles in Fig. 3, and agree well with the experimen-
tal measurements.

The analytical solution �17� exhibits better agreement with ex-
periments and finite element analysis for A0=6.7 and 8.4 
m
than with A0=9.7 
m. This is due largely to the small amplitude
assumptions, A0 /��1, of the perturbation method. Figure 5 illus-
trates the distribution of tangential strain �tt of the wavy surface.
The analytical solution, up to the second order, is

�tt = �a�1 − 2A0k cos kx − �A0k�2�1 − cos 2kx�� �18�

and is indicated by the dotted lines in Fig. 5 for a wavelength �
=49 
m, and small amplitude A0=3 
m and large amplitude
A0=9.7 
m. The zeroth-order solution is the uniform strain, �tt
=�a, shown by the horizontal solid line in Fig. 5, while the solu-
tion up to the first order is �tt=�a�1−2A0k cos kx� shown as
dashed curves. For A0=3 
m, the difference between the first-
and second-order solutions �dashed versus dotted lines� is small,
and the wavy surface is in tension ��tt�0�. For A0=9.7 
m, the
difference between the first- and second-order solutions �dashed
versus dotted lines� becomes quite large, and part of the wavy
surface is in compression ��tt
0�. Results from the finite element
analysis are also shown in Fig. 5 for comparison. For A0=3 
m,
the second-order solution has better agreement with finite element

Fig. 2 Critical fabrication steps for generating wavy surface profiles in PDMS, „a…. An-
isotropic etching of a Si „100… wafer yields a saw-tooth surface relief, which after partial
smoothing can be replicated through sequential imprinting into layers of PDMS prepoly-
mer „i…. The approximately sinusoidal relief can be molded into a layer of SU-8 supported
on a plastic substrate „ii…, cured, and undergone a final smoothing step. The molded
SU-8 is then used as a template for a final PDMS imprinting step, „iii…. The resulting
PDMS substrate has a sinusoidal profile like that in „b…, with a wavelength of 49 �m and
tunable peak to valley amplitude.

Fig. 3 The analytical, experimental, and numerical results of
amplitude A versus the applied strain εa for a wavy PDMS „E
=2 MPa, �=0.48…, with wavelength �=49 �m and initial ampli-
tudes A0=6.7, 8.4, and 9.7 �m. Fig. 4 Finite element mesh for the solid with the wavy surface
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analysis than the first-order solution. However, for A0=9.7 
m,
the difference between the analytical solution and the finite ele-
ment analysis is still large. This is because the error of the ratio
�tt /�a given by Eq. �18� is of order O��A0k�3�, which is very small
for A0=3 
m, but for A0=9.7, A0k
1.

4 An Analytical Solution for the Wavy Thin Film/
Substrate System

Compliant wavy substrate with conformally integrated stiff thin
film provides an alternative approach to fabricate stretchable elec-
tronics �27�. This avoids introducing any initial strain into the thin
film, and thus achieves both high stretchability and compressibil-
ity. Fabrication of this wavy thin film/substrate system is the same
to the process described in Sec. 3, except that thin Au films are
deposited onto the SU-8 surface before the final molding step.
Detailed information for fabricating such a system can be found in
Ref. �27�.

The profile of the wavy thin film/substrate system before defor-
mation is described as y=A0 cos kx. It changes to y= �A0
−B�cos kx after a small applied strain �a in the x direction. The
wavy substrate in this system could be modeled as a semi-infinite
solid with a wavy surface profile y=A0 cos kx that is subject to a
normal displacement, uy =B cos kx. It has been established �21,27�
that the effect of interface shear traction is negligible, since the
elastic modulus of the PDMS substrate �
2 MPa� is several or-
ders of magnitude smaller than that of Au film �
70 GPa�. Equa-
tions �1�–�6� in Sec. 3 remain valid, however the traction-free
boundary conditions �7� must be modified to yield

uy = B cos kx

n · ��xx �xy

�xy �yy
� · t = 0

at � = 0 �19�

where the second equation represents the vanishing shear traction,
and t is the unit vector along the tangential direction �1,
−A0k sin k��.

The zeroth-�leading�, first-, and second-order solutions then be-
come

ux
�0� = �a�, uy

�0� = −
�

1 − �
�a� �20�

ux
�1� =

ek� sin k�

2k�1 − �� ��1 − 2� + k��
B

A0
− �3 − 2� + k���a�

uy
�1� =

cos k�

2k�1 − ���− 2��a + ek���2 − 2� − k��
B

A0
+ �2� + k���a��

�21�

ux
�2� =

sin 2k�

16k�1 − ��2
4�1 − ��ek�� B

A0
�2 − 2� + k�� − �a�4 − 2�

+ k��� − e2k�� B

A0
�5 − 12� + 8�2 + 2�3 − 4��k�� − �a�19

− 28� + 8�2 + 2�5 − 4��k����
uy

�2� =
cos 2k�

16k�1 − ��2
4�1 − ��ek�� B

A0
�1 − 2� − k�� + �a�1 + 2�

+ k��� − 2e2k�� B

A0
�2�1 − 3� + 2�2� − �3 − 4��k�� + �a�2�1

+ � − 2�2� + �5 − 4��k���� +
1

4k�1 − ���ek�� B

A0
�1 − 2�

− k�� + �a�1 + 2� + k��� − � B

A0
�1 − 2�� + �a�1 + 2����

�22�

The strain energy U per wavelength can be obtained analytically.
For applied strain �a=0, it is given by

U��a = 0� =
�

4

E

1 − �2B2 �23�

It shows excellent agreement with the finite element analysis in
Fig. 6 versus the ratio B /A0 for the wavelength �=49 
m and
amplitude A0=3 
m.

The derivative of strain energy U per wavelength with respect
to B, which is necessary in the study of thin film/substrate system,
is given by

dU

dB
=

�

2

E

1 − �2 �B + �aA0� �24�

It is important to account for the second-order term in the above
expression since U is a quadratic function of the displacement,
u=u�0�+ �A0k�u�1�+ �A0k�2u�2�+¯. The strain energy U per wave-
length can be similarly written as U=U�0�+ �A0k�U�1�

Fig. 5 Distribution of tangential strain εtt of the wavy surface up to the zeroth-, first-, and
second-order normalized by the applied strain εa. The wavelength is �=49 �m, and initial
amplitudes are „a… A0=3 �m and „b… A0=9.7 �m. The results from the finite element analysis
are also shown.
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+ �A0k�2U�2�+¯, where U�0� is a constant such that dU�0� /dB=0.
Likewise, U�1� involves a cross term between u�0� and u�1� whose
integration over the wavelength provides a vanishing contribution,
U�1�=0, leaving only U�2� to make a nonzero contribution to
dU /dB since U�2� involves the quadratic terms of u�1� and the
cross term between u�0� and u�2�.

5 Concluding Remarks
The analytical solution for a semi-infinite linear elastic solid

with a wavy surface subject to uniaxial strain or “stretch” is ob-
tained via the perturbation method. The amplitude A of the de-
formed wavy surface is related to the initial amplitude A0 by A
=A0�1−�a�, where �a is the applied strain. This simple expression
agrees well with both experimental measurements and finite ele-
ment analyses for small amplitude wavy profiles. The analytical
solution is also obtained for a wavy solid subject to stretching and
lateral displacement, an important addition for the study of thin
films on a wavy substrate.
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Particular Solutions of a
Two-Dimensional Infinite Wedge
for Various Boundary Conditions
With Weak Singularity
The particular solutions of a two-dimensional infinite wedge for various boundary con-
ditions with lnr weak singularity have been investigated in this paper. The relations of the
weak singularities and the discontinuities of the first kind of the boundary variables at a
corner of a two-dimensional elastic body have been established. By using the relations,
the singular behaviors of the unknown boundary variables at a corner of an elastic body
can be obtained before solving the boundary value problem by using the boundary ele-
ment method (BEM). Especially, if the boundary conditions at a corner are displacements
prescribed, the values of the unknown tractions at the corner can be determined in
advance. Thus, the difficulty related to the multivalued tractions at a corner in BEM
analysis for problems with boundary displacements prescribed has been overcome com-
pletely. In addition, more appropriate shape functions for the unknown boundary field
variables of a corner element can be constructed, and the accuracy of the BEM may be
greatly increased. �DOI: 10.1115/1.3168599�

Keywords: corner problem, boundary displacement and traction, discontinuity of the first
kind, weak singularity, boundary element method

1 Introduction
The 2D solutions for the displacements and stresses in an infi-

nite elastic wedge are of major interest in elasticity problems.
Since the boundary conditions at infinity are unspecified, there are
infinite solutions for the problem. The boundary conditions at in-
finity can be divided into two sets: The first set balances the
boundary conditions on the wedge sides, and the second set is
self-balanced. The solution of the self-balanced boundary condi-
tions at infinity is called a homogeneous solution, which satisfies
zero boundary conditions on the two sides of the wedge. The
solution of the prescribed nonzero boundary conditions on the
wedge sides and their corresponding balancing boundary condi-
tions at infinity is called a particular solution.

The homogeneous solutions of an infinite wedge with angle 2�
have been resolved analytically for more than 50 years ago in the
pioneering theoretical work of Williams �1� by using complex
variable analysis and eigenfunction expansion. Three cases of ho-
mogeneous boundary conditions were considered by Williams �1�:
free-free, clamped-clamped, and clamped-free. Let r denote the
distance from the wedge-tip. The main conclusion about the ho-
mogeneous solutions is that the stresses at the wedge-tip for all
three cases considered may have singularity of r−� �0���1�,
where � is a function of �. The detailed information of the behav-
ior of � for the free-free case can be found in Refs. �2–7�. The
singular behaviors of a multiwedge system can be found in Refs.
�8,9�.

Particular solutions are less studied than homogeneous solu-
tions. By using a generalized Airy stress function, Dempsey �6�
and Ting �7� obtained a particular solution of an infinite wedge
subjected to a uniform loading on each side of the wedge; Wang

�10� obtained a particular solution of an infinite wedge subjected
to tractions in proportion to rn�n�0�. The stresses of the particu-
lar solutions provided in Refs. �6,7,10�. are bounded for all angles
except for 2�=�, 2�, and 2��, where �� is the root of the equa-
tion tan�2��=2�. The stresses for 2�=�, 2� and 2�� may in-
clude ln r weak singularity. Since the superposition of a homoge-
neous solution to a particular solution is also a particular solution,
particular solution may also have r−� singularity. However, it is
always possible to find a particular solution, which does not have
r−� singularity; in the following, this kind of particular solution
will be considered. For simplicity, the derivative of a boundary
displacement component in the boundary tangent direction is
called “boundary displacement derivative” in the following. We
point out that, in Refs. �6,7,10�, the prescribed tractions at the
wedge-tip only have the discontinuity of the first kind. It is found
that the boundary tangent displacement derivative at the wedge-tip
only has discontinuity of the first kind like the prescribed trac-
tions; however, in addition to the discontinuity of the first kind,
the boundary normal displacement derivative at the wedge-tip also
has weak singularity.

Although there are many practical corner problems with pre-
scribed displacement boundary conditions, we have not found any
reports, so far, about particular solutions of an infinite wedge with
some kind of prescribed displacements on its sides. To investigate
this type of problems, a general form of the boundary displace-
ment field should be assumed first. From the above discussions for
traction prescribed wedge problems, the simplest form of the
boundary displacement derivatives at the wedge-tip should in-
clude the discontinuity of the first kind and weak singularity. It
will be shown in this paper that the stresses of the particular
solution for prescribed boundary displacements on the sides of the
wedge may also have weak singularity at the wedge-tip. General
discussions about weak singularities of stresses at a wedge-tip
were reported by Sinclair �11�. Although the type of weak singu-
larity of tractions is unlikely to occur in practice, it will play an
important role in establishing the relations between boundary dis-
placement derivatives and tractions at a corner.
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The boundary integral equation �BIE� for an elasticity problem
is a statement of the exact solution to the problem. Errors of the
solution of a BIE obtained by using the boundary element method
�BEM� are due to discretization and numerical approximation in
BEM �12�. If the discretization and the numerical integration pro-
cedure are made sufficiently sophisticated, the errors introduced
can be very small. BEM is more accurate than other numerical
methods and it is more suitable for problems with sharp gradients,
e.g., corner problems, crack problems, problems with discontinu-
ous, or singular boundary conditions.

The treatment of corners has been a subject of considerable
interest in solving an elastic boundary value problem by BEM.
The displacement and stress fields near a corner can be approxi-
mated by the solution of an infinite wedge comprised by the two
tangent lines at the corner. In BEM analysis, there are two diffi-
culties that one needs to pay attention to. One is the r−� singular
behavior of the boundary field variables at the corner, which is
related to the homogeneous solution of the infinite wedge; the
other is the discontinuity of the first kind and weak singularity of
the boundary field variables at the corner, which is related to the
particular solution of the infinite wedge. The strategies to deal
with these two difficulties are quite different.

First consider the possible r−� singular behavior of the un-
known boundary variables at a corner. Similar to crack problems,
the strength of the singular behavior of the field variables can be
represented by the stress intensity factor �SIF� at the corner-tip
that is the coefficient of the singular term r−�. Note that the SIF of
an infinite wedge-tip depends on the self-balanced boundary con-
ditions at infinity, hence, the SIF of the corner of a finite elastic
body will depend on the circumferential boundary conditions of
the elastic body. Therefore, the strategy used in BEM when
boundary fields have r−� singularity at a corner is similar to that
for crack problems: In order to improve the efficiency and preci-
sion of the numerical calculation, the interpolation function must
include terms, which can account for the analytical form of the
singularity with SIF as a unknown parameter. From many inves-
tigations in this problem, for example, refer to Portela et al. �13�
who developed the boundary element singularity subtraction tech-
nique to provide an efficient and accurate method to deal with the
singular behavior of boundary field variables when investigating
V-shape notch problems. The problem of r−� singular behavior of
the field variables, which is related to the homogeneous solution
of the infinite wedge problem, will be excluded in this paper.

Now consider the discontinuous and weakly singular behavior
of the unknown boundary variables at a corner, which is related to
the particular solution of the corresponding infinite wedge. If the
boundary conditions at and near a corner are displacements alone
being prescribed, since the unknown tractions are multivalued, the
number of degrees of freedom will exceed the number of equa-
tions. Many techniques have been proposed to overcome this dif-
ficulty in literatures, for example: �1� to round off the corner �14�.
An obvious disadvantage of this procedure is that the accuracy of
the results at and near the corner will be lost. �2� To use multiple
boundary nodes �15–17� or to add source points that are not on the
boundary �18,19� avoiding direct collocation at the corner. The
major drawback of this technique is that the positions of the added
off-corner nodes should not be too close to the corner otherwise
computation instability would occur. �3� To add a set of auxiliary
relations of boundary field variables �20�. Theoretically, the last
technique is the right way, but some of the auxiliary relations used
may not be strictly correct, for example, the equivalent law of
shearing stresses and Hooke’s law, which are not always valid at a
corner, were used as the auxiliary relations. In contrast to the r−�

singular behavior, we will show that the intensities of the discon-
tinuity, and the weak singularity at the corner of the unknown field
variables only depend on the corresponding intensities of the
known field variables at the corner. Therefore, the values of the

unknown field variables at the corner can be obtained in advance.
Thus, the difficulty of the multivalued unknown tractions does not
exist anymore.

The main work of this paper is to establish the analytical rela-
tions between the boundary field variables at a corner. Instead of
using a generalized Airy stress function, as in Refs �6,7,10�, to
obtain the particular solution of a wedge problem for traction
prescribed problem, a general form of displacement field is used
to obtain the particular solutions of a wedge problem for any type
of boundary conditions in this paper. The stresses and the dis-
placement derivatives deduced from the general form include
three terms: a weakly singular term, a discontinuous term, and a
continuous term. This form actually includes most situations in
practical as well as theoretical problems. Although boundary dis-
placement and traction are independent field variables in the
boundary conditions of an elasticity problem, the values of the
discontinuity and the possible weak singularity of the unknown
tractions or boundary displacement derivatives at a corner can be
obtained from the prescribed boundary conditions by using the
particular solutions of the wedge problem. Therefore, the problem
of multivalued corner tractions, if the boundary conditions at a
corner are displacements alone being prescribed, is solved com-
pletely. Furthermore, since the possible weak singularities of the
field variables are also obtained, more appropriate shape functions
of the unknown boundary field variables in the corner element can
be constructed, and the accuracy of the BEM may be greatly
increased.

2 Weakly Singular Tractions
Let O be a boundary smooth or corner point of an elastic body,

and s be the boundary length with origin at point O. In elastic
theory, mechanical models of traction with various singularities
are introduced, such as discontinuity of the first kind, ln�s� weak
singularity, �s�−� singularity, concentrated force, etc. Since it is
quite difficult to handle concentrated force when using BEM to
solve the BIE of an elasticity problem, the concentrated force
model will be excluded in the following discussion. The stress
field near point O may be approximated by the solution of an
infinite wedge comprised by the two tangent lines at point O.
Consider an infinite elastic wedge with angle 2� as shown in Fig.
1, where �r ,�� and �x1 ,x2� are the polar and Cartesian coordinate
systems with the origin located at the wedge-tip O, respectively; n
and s denote the boundary normal and tangent directions, respec-
tively. As mentioned in the introduction, the stresses with �s�−�

singularity are related to the homogenous solutions of the wedge,
it will also be excluded in the following discussion.

Let ti�s�, i=n or s, be a traction component, which is related to
the particular solutions of the wedge. Here, ti may be discontinu-
ous and weakly singular at s=0. It is supposed that the disconti-
nuity of a traction component is bounded. If O is a smooth bound-
ary point, the weakly singular part of the traction component at
s=0 may be expressed as the form pi ln�s�, where pi is called the
weak singularity intensity of the traction component. In this mean-

Fig. 1 An infinite wedge with angle 2�
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ing, the weakly singular part of a traction component at s=0 is
formally said to be continuous. We indicate that pn and ps are
independent parameters.

If O is a boundary corner point, the weakly singular part of a
traction component at s=0 should be expressed in the form
pi� ln�s�, where the plus and minus signs are for s�0 and s�0,
respectively. Next, we will demonstrate that pn� and ps� are not
independent parameters.

Let 	ij�r ,�� denote the stress field near a corner. Assume that
	ij�r ,�� is single-valued if r�0, it may be weakly singular but
	ij�r ,�1�−	ij�r ,�2� is bounded for any �1 and �2 as r→0.
	ij�r ,�� may be expressed as

	ij�r,�� = 	ij
c �r,��ln r + 	ij

d �r,��

where 	ij
d �r ,�� is single-valued if r�0, it is bounded but it may

be multivalued at r=0; 	ij
c �r ,�� is single-valued and bounded for

all r. Therefore, 	ij
c �r ,�� is independent of � as r→0.

	ij
c �0,�� = kij

where kij is called the weak singularity intensity of the stress
component 	ij at the corner. Let tn

c�s�ln�s� and ts
c�s�ln�s� denote the

weakly singular terms of the normal and tangent tractions related
to 	ij

c �r ,��ln r, we have

pn� = lim
s→�0

tn
c�s� = kijnj�ni�

ps� = lim
s→�0

ts
c�s� = kijnj�si�

The stresses near the wedge-tip can always be considered as the
superposition of a symmetric problem and an antisymmetric prob-
lem, as shown in Fig. 2. The symmetric and antisymmetric stress
fields have the following properties:

	��
sy �r,− �� = 	��

sy �r,��, 	r�
sy�r,− �� = − 	r�

sy�r,�� ,

	rr
sy�r,− �� = 	rr

sy�r,��

	��
an�r,− �� = − 	��

an�r,��, 	r�
an�r,− �� = 	r�

an�r,�� ,

	rr
an�r,− �� = − 	rr

an�r,��

Letting

pn
sy = pn+

sy , ps
sy = ps+

sy , pn
an = pn+

an, ps
an = ps+

an

we have

pn−
sy = pn

sy, ps−
sy = − ps

sy, pn−
an = − pn

an, ps−
an = ps

an

2.1 Symmetric Tractions. If 2���, the symmetric stresses
	ij

sy are single-valued, so the weak singularity intensity of the
stress component kij

sy may be of any finite value. Therefore the
weak singularity intensities of the tractions pn

sy and ps
sy may take

any finite values. If 2�=�, the shear stress component 	12
sy is

discontinuous at r=0. Since the weakly singular part of 	12
sy is

continuous by definition, the tangent weak singularity intensity ps
sy

must be zero.

2.2 Antisymmetric Tractions. The weak singularity intensi-
ties of normal and tangent tractions at an antisymmetric wedge-tip
are shown in Fig. 3. First consider the case of 2���. Note that
the equivalent law of shearing stresses is generally not valid at an
antisymmetric wedge-tip. However, if the ratio of the normal and
tangent tractions at an antisymmetric wedge-tip equals to a certain
value, the equivalent law of shearing stresses may be valid there.
In Fig. 3, OC is perpendicular to OD, and the included angle
between OD and x1 axis is � /4. Denote the shear stress compo-
nents of the surface OC and OD by ts

OC and ts
OD, respectively. Note

that ts
OC= ts

OD for this antisymmetric problem. The force equilib-
rium conditions of the triangle OAB in the direction of AB, where
AB is parallel to OD, can be written as

lABts
OD = lOA�pn

an cos 
 − ps
an sin 
� + lOB�pn

an sin 
 + ps
an cos 
�

�2.1�
where

lOB = lOA cot 
, 
 =
�

4
− �

The equivalent law of shearing stresses for this antisymmetric
configuration requires that ts

OD= ts
OC=0. In this case, the stresses at

the antisymmetric wedge-tip are single-valued. By letting the right
side of Eq. �2.1� be zero, we obtain

pn
an

ps
an = − tan 2� �2.2�

It is easy to see that if the condition �2.2� is satisfied, the antisym-
metric stress field is pure shear. If 2�=�, the normal stress com-
ponent 	22

an is discontinuous at r=0; since the weakly singular part
of 	22

an is continuous by definition, the normal weak singularity
intensity pn

an must be zero. In fact, this result has already been
included in Eq. �2.2�.

2.3 General Problem. Let pn� and ps� denote the weak sin-
gularity intensity of the normal and tangent tractions at the wedge-
tip of a general problem, respectively. The symmetric and anti-
symmetric weak singularity intensities of the tractions at the
wedge-tip of the general problem are as follows:

pn
sy =

pn+ + pn−

2
, ps

sy =
ps+ − ps−

2
�2.3�

pn
an =

pn+ − pn−

2
, ps

an =
ps+ + ps−

2
�2.4�

Substitution of Eq. �2.4� into Eq. �2.2� yields

pn+ − pn−

ps+ + ps−
= − tan 2� �2.5�

Equation �2.5� shows that the four weak singularity intensities at
the wedge-tip pn� and ps� are dependent on each other. If the
boundary conditions of an infinite wedge are tractions prescribed,

Fig. 2 Tractions of a symmetric „a… and an antisymmetric „b…
wedge

Fig. 3 Weak singularity intensities of tractions at an antisym-
metric wedge-tip
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but Eq. �2.5� is not satisfied, then the stresses at the wedge-tip
must have infinite discontinuities at the wedge-tip. This case will
be excluded in this paper.

3 Particular Solutions of an Infinite Symmetric Wedge

3.1 Expressions of Displacement and Stress Fields. The
displacement field of the particular solutions of a symmetric
wedge is assumed to be the following general form:

ur
sy = r��a + b cos 2��ln r + c cos 2� + d� sin 2� + e� + ūr

sy�r,��
�3.1a�

u�
sy = r�f sin 2� ln r + g sin 2� + h� cos 2� + i�� + ū�

sy�r,��
�3.1b�

where the gradients of displacements ūr
sy, ū�

sy are continuous and
their values are zero at r=0. The corresponding stresses 	̄rr

sy, 	̄��
sy ,

and 	̄r�
sy satisfy the stress equilibrium equations and their values

are zero at r=0. It is easy to show that the gradients of the total
displacement field �3.1a� and �3.1b� are continuous for r�0. But,
as r→0, the gradients of the displacement field �3.1a� and �3.1b�
may have discontinuity of the first kind and ln r weak singularity.

The stress field corresponding to the displacement field Eqs.
�3.1a� and �3.1b� can be obtained through Hooke’s law as follows:

	rr
sy = 2���s1�a + b cos 2�� + 2s2f cos 2��ln r + �s1c + s2�2g + h�

+ s3b�cos 2� + �s1d − 2s2h�� sin 2� + s3a + s1e + s2i�

+ 	̄rr
sy�r,�� �3.2a�

	��
sy = 2���s1�a + b cos 2�� + 2s3f cos 2��ln r + �s1c + s3�2g + h�

+ s2b�cos 2� + �s1d − 2s3h�� sin 2� + s2a + s1e + s3i�

+ 	̄��
sy �r,�� �3.2b�

	r�
sy = 2��− b sin 2� ln r −

2c − d − f

2
sin 2� + d� cos 2�	

+ 	̄r�
sy�r,�� �3.2c�

where � is the shear modulus, and

s1 =
2

� − 1
, s2 =

3 − �

2�� − 1�
, s3 =

� + 1

2�� − 1�
�3.3�

where � is related to Poisson’s ratio 
.

� = 
3 − 4
 �plane strain�
�3 − 
�/�1 + 
� �plane stress� �

Substitution of the stress field �3.2a�, �3.2b�, and �3.2c� into the
stress equilibrium equations yields

d = f = h = − b, g = − c, i = 2s3a �3.4�
Therefore, the coefficients in the displacement expression �3.1a�
and �3.1b� are dependent.

Using relations �3.4�, Eqs. �3.1a�, �3.1b�, �3.2a�, �3.2b�, and
�3.2c� are simplified as

ur
sy = r��a + b cos 2��ln r + c cos 2� − b� sin 2� + e� + ūr

sy�r,��
�3.5a�

u�
sy = r�− b sin 2� ln r − c sin 2� − b� cos 2� + 2s3a�� + ū�

sy�r,��
�3.5b�

and

	rr
sy = 2���s1a + b cos 2��ln r + �b + c�cos 2� − b� sin 2� + s1s3a

+ s1e� + 	̄rr
sy�r,�� �3.6a�

	��
sy = 2���s1a − b cos 2��ln r − �b + c�cos 2� + b� sin 2� + �s2

+ 2s3
2�a + s1e� + 	̄��

sy �r,�� �3.6b�

	r�
sy = 2��− b sin 2� ln r − �b + c�sin 2� − b� cos 2�� + 	̄r�

sy�r,��
�3.6c�

respectively. Letting �= �� in Eqs. �3.6b� and �3.6c�, we obtain
the following:

	��
sy �r, � �� = pn

sy ln r + pn0
sy + Pn

sy�r� �3.7a�

	r�
sy�r, � �� = � ps

sy ln r � ps0
sy � Ps

sy�r� �3.7b�
where

pn
sy = 2��s1a − b cos 2�� �3.8a�

ps
sy = − 2�b sin 2� �3.8b�

pn0
sy = 2��− �b + c�cos 2� + b� sin 2� + �s2 + 2s3

2�a + s1e�
�3.8c�

ps0
sy = − 2���b + c�sin 2� + b� cos 2�� �3.8d�

and

Pn
sy�r� = 	̄��

sy �r,��, �Pn
sy�0� = 0�

Ps
sy�r� = − 	̄r�

sy�r,��, �Ps
sy�0� = 0�

The tractions as the functions of the boundary length s can be
obtained from Eqs. �3.7a� and �3.7b� as follows:

tn
sy�s� = pn

sy ln�s� + pn0
sy + Pn

sy��s�� �3.9a�

ts
sy�s� = � ps

sy ln�s� � ps0
sy � Ps

sy��s��, s � 0 for plus sign,

s � 0 for minus sign �3.9b�

where pn
sy and ps

sy are the weak singularity intensities of the nor-
mal and tangent tractions at the wedge-tip, respectively; pn0

sy and
ps0

sy are the values of the finite parts of the normal and tangent
tractions at the wedge-tip, respectively.

The displacement derivatives with respect to r can be obtained
from Eqs. �3.5a� and �3.5b� as follows:

�u�
sy�r,��
�r

= − b sin 2� ln r − �b + c�sin 2� − b� cos 2� + 2s3a�

+
� ū�

sy�r,��
�r

�3.10a�

�ur
sy�r,��
�r

= �a + b cos 2��ln r + �b + c�cos 2� − b� sin 2� + a + e

+
� ūr

sy�r,��
�r

�3.10b�

Substituting of �= �� into Eqs. �3.10a� and �3.10b� yields

�u�
sy�r, � ��

�r
= � wn

sy ln r � wn0
sy � Wn

sy�r� �3.11a�

�ur
sy�r, � ��

�r
= ws

sy ln r + ws0
sy + Ws

sy�r� �3.11b�

where

wn
sy = − b sin 2� �3.12a�

ws
sy = a + b cos 2� �3.12b�

wn0
sy = − �b + c�sin 2� − b� cos 2� + 2s3a� �3.12c�
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ws0
sy = �b + c�cos 2� − b� sin 2� + a + e �3.12d�

and

Wn
sy�r� =

� ū�
sy�r,��
�r

, �Wn
sy�0� = 0�

Ws
sy�r� =

� ūr
sy�r,��
�r

, �Ws
sy�0� = 0�

The boundary displacement derivatives as functions of s can be
obtained from Eqs. �3.11a� and �3.11b�, the results are

un�
sy�s� = � wn

sy ln�s� � wn0
sy � Wn

sy��s�� ,

s � 0 for plus sign, s � 0 for minus sign �3.13a�

us�
sy�s� = ws

sy ln�s� + ws0
sy + Ws

sy��s�� �3.13b�

where wn
sy and ws

sy are the weak singularity intensities of the nor-
mal and tangent displacement derivatives at the wedge-tip, respec-
tively; wn0

sy and ws0
sy are the values of the finite parts of the normal

and tangent displacement derivatives at the wedge-tip, respec-
tively. Equations �3.9a�, �3.9b�, �3.13a�, and �3.13b� indicate that
the tractions and the boundary displacement derivatives at the
wedge-tip are composed of a finite part and a weakly singular
part. Moreover, the discontinuity value of the finite part at the
wedge-tip has been separated from the other part. In the follow-
ing, the relations between tractions and boundary displacement
derivates at the wedge-tip will be determined.

3.2 Tractions Prescribed Problem. If the boundary condi-
tions are tractions prescribed, pn

sy, ps
sy, pn0

sy , and ps0
sy in the right

sides of Eqs. �3.9a� and �3.9b� are known. From the linear alge-
braic Eqs. �3.8a�, �3.8b�, �3.8c�, and �3.8d�, we obtain

a =
� − 1

4�
�pn

sy − ps
sy cot 2�� �3.14a�

b = −
1

2� sin 2�
ps

sy �3.14b�

c =
1

2� sin 2�
��1 + � cot 2��ps

sy − ps0
sy� �3.14c�

e =
� − 1

4�

−

3� − 1

2�� − 1�
pn

sy + � 3� − 1

2�� − 1�
cot 2� + ��cot2 2� + 1�
ps

sy

+ pn0
sy − ps0

sy cot 2�� �3.14d�

Substituting Eqs. �3.14a�, �3.14b�, �3.14c�, and �3.14d� into Eqs.
�3.12a�, �3.12b�, �3.12c�, and �3.12d� yields

wn
sy =

1

2�
ps

sy �3.15a�

ws
sy =

1

4�
��� − 1�pn

sy − �� + 1�ps
sy cot 2�� �3.15b�

wn0
sy =

1

4�
��� + 1���pn

sy − ps
sy cot 2�� + 2ps0

sy� �3.15c�

ws0
sy =

� + 1

4�
�−

1

2
pn

sy + �� cot2 2� +
1

2
cot 2� + �	ps

sy +
� − 1

� + 1
pn0

sy

− ps0
sy cot 2�
 �3.15d�

Now consider the case when the infinite wedge subjected to a
uniform loading. It is easy to find that 	̄��

sy and 	̄r�
sy are zero. Since

the tractions at the wedge-tip do not have weak singularity, we
have pn

sy = ps
sy =0. Thus Eqs. �3.14a�, �3.14b�, �3.14c�, and �3.14d�

becomes

a = b = 0

c = −
1

2� sin 2�
ps0

sy

e =
� − 1

4�
�pn0

sy − ps0
sy cot 2��

Substitution of the above results into Eqs. �3.5a�, �3.5b�, �3.6a�,
and �3.6b� yields

ur
sy =

r

2�
�� − 1

2
pn0

sy − � cos 2�

sin 2�
+

� − 1

2
cot 2�	ps0

sy

�3.16a�

u�
sy =

r

2�
� sin 2�

sin 2�
ps0

sy	 �3.16b�

and

	rr
sy = pn0

sy −
cos 2� + cos 2�

sin 2�
ps0

sy �3.17a�

	��
sy = pn0

sy +
cos 2� − cos 2�

sin 2�
ps0

sy �3.17b�

	r�
sy =

sin 2�

sin 2�
ps0

sy �3.17c�

respectively. Equations �3.16a�, �3.16b�, �3.17a�, and �3.17b� are
the same with Ting’s results �7�.

The stress field �3.17a� and �3.17b� in the Cartesian coordinate
system becomes

	xx
sy = 	rr

sy cos2 � + 	��
sy sin2 � − 	r�

sy sin 2� = pn0
sy −

cos 2� + 1

sin 2�
ps0

sy

	yy
sy = 	rr

sy cos2 � + 	��
sy sin2 � + 	r�

sy sin 2� = pn0
sy −

cos 2� − 1

sin 2�
ps0

sy

	xy
sy = 1

2 �	rr
sy − 	��

sy �sin 2� + 	r�
sy cos 2� = 0

Thus, the stress field of the wedge is constant. From Eqs. �3.15a�,
�3.15b�, �3.15c�, and �3.15d� we obtain

wn
sy = ws

sy = 0 �3.18a�

wn0
sy =

ps0
sy

2�
�3.18b�

ws0
sy =

1

4�
��� − 1�pn0

sy − �� + 1�ps0
sy cot 2�� �3.18c�

Substituting Eqs. �3.18a�, �3.18b�, and �3.18c� into Eqs. �3.13a�
and �3.13b� and letting s=0, we obtain

un�
sy�0�� = �

1

2�
ps0

sy �3.19a�

us�
sy�0�� =

1

2�
�� − 1

2
pn0

sy − �� + 1

2
cot 2�	ps0

sy
 �3.19b�

The discontinuous values of the displacement derivatives can be
obtained from Eqs. �3.19a� and �3.19b�.

�un�
sy = un�

sy�0+� − un�
sy�0−� =

ps0
sy

�
�3.20a�
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�us�
sy = us�

sy�0+� − us�
sy�0−� = 0 �3.20b�

3.3 Displacement Prescribed Problem. If the boundary con-
ditions is displacement prescribed, wn

sy, ws
sy, wn0

sy , and ws0
sy in the

right sides of Eqs. �3.13a� and �3.13b� are known. From the linear
algebraic Eqs. �3.12a�, �3.12b�, �3.12c�, and �3.12d�, we obtain the
following

a = wn
sy cot 2� + ws

sy �3.21a�

b = −
wn

sy

sin 2�
�3.21b�

c =
1

sin 2�
��1 +

2�

� − 1
� cot 2�	wn

sy +
� + 1

� − 1
�ws

sy − wn0
sy

�3.21c�

e = − � 2�

� − 1
� cot2 2� + cot 2� + �	wn

sy − �� + 1

� − 1
� cot 2�

+ 1	ws
sy + wn0

sy cot 2� + ws0
sy �3.21d�

Substituting Eqs. �3.21a�, �3.21b�, �3.21c�, and �3.21d� into Eqs.
�3.8a�, �3.8b�, �3.8c�, and �3.8d� yields

pn
sy = 2��� + 1

� − 1
wn

sy cot 2� +
2

� − 1
ws

sy	 �3.22a�

ps
sy = 2�wn

sy �3.22b�

pn0
sy = 2�

� + 1

� − 1

�−

2�

� − 1
� cot2 2� +

1

� − 1
cot 2� − �
�wn

sy

− 
�� + 1

� − 1
� cot 2� −

1

� − 1

ws

sy + wn0
sy cot 2� +

2

� + 1
ws0

sy�
�3.22c�

ps0
sy = − 2��� + 1

� − 1
��wn

sy cot 2� + ws
sy� − wn0

sy
 �3.22d�

Now consider the case when the boundary displacement deriva-
tives do not have weak singularity, wn

sy =ws
sy =0. Equations

�3.22a�, �3.22b�, �3.22c�, and �3.22d� becomes

pn
sy = ps

sy = 0 �3.23a�

pn0
sy =

2�

� − 1
��� + 1�wn0

sy cot 2� + 2ws0
sy� �3.23b�

ps0
sy = 2�wn0

sy �3.23c�

Equations �3.23a�, �3.23b�, and �3.23c� is in consistence with Eqs.
�3.18a�, �3.18b�, and �3.18c�

4 Four Particular Solutions of an Infinite Antisymmet-
ric Wedge

4.1 Expressions of Displacement and Stress Fields. The
displacement field of particular solutions of an antisymmetric
wedge is assumed to be the of the following general form:

ur
an = r�a sin 2� ln r + b sin 2� + c� cos 2� + d�� + ūr

an�r,��
�4.1a�

u�
an = r��e + f cos 2��ln r + g cos 2� + h� sin 2� + i� + ū�

an�r,��
�4.1b�

where the gradients of displacements ūr
an and ū�

an are continuous
and their values are zero at r=0. The corresponding stresses 	̄rr

an,
	̄��

an, and 	̄r�
an satisfy the stress equilibrium equations and their

values are zero at r=0. It is easy to show that the gradients of the
total displacement field �4.1� are continuous for r�0. But, as r
→0, the gradients of the displacement field �4.1� may have dis-
continuity of the first kind and ln r weak singularity.

The stress field corresponding to the displacement field Eq.
�4.1� can be obtained through Hooke’s law as follows:

	rr
an = 2���s1a − 2s2f�sin 2� ln r + �s3a + s1b + s2�h − 2g��sin 2�

+ �s1c + 2s2h�� cos 2� + s1d�� + 	̄rr
an�r,�� �4.2a�

	��
an = 2���s1a − 2s3f�sin 2� ln r + �s2a + s1b + s3�h − 2g��sin 2�

+ �s1c + 2s3h�� cos 2� + s1d�� + 	̄��
an�r,�� �4.2b�

	r�
an = 2��a cos 2� ln r +

2b + c + f

2
cos 2� − c� sin 2� +

d + e

2
	

+ 	̄r�
an�r,�� �4.2c�

where s1, s2, and s3 are defined by Eq. �3.3�.
Substitution of the stress field �4.2� into the stress equilibrium

equations yields

c = f = − h = a, g = b, e = − 2s3d �4.3�
Therefore, the coefficients in the displacement expression �4.1�
are dependent.

Using relations �4.3�, Eqs. �4.1� and �4.2� are simplified as

ur
an = r�a sin 2� ln r + b sin 2� + a� cos 2� + d�� + ūr

an�r,��
�4.4a�

u�
an = r��− 2s3d + a cos 2��ln r + b cos 2� − a� sin 2� + i�

+ ū�
an�r,�� �4.4b�

and

	rr
an = 2��a sin 2� ln r + �a + b�sin 2� + a� cos 2� + s1d��

+ 	̄rr
an�r,�� �4.5a�

	��
an = 2��a sin 2� ln r − �a + b�sin 2� − a� cos 2� + s1d��

+ 	̄��
an�r,�� �4.5b�

	r�
an = 2��a cos 2� ln r + �a + b�cos 2� − a� sin 2� − 1

2s1d�
+ 	̄r�

an�r,�� �4.5c�

respectively. Letting �= �� in Eqs. �4.5b� and �4.5c�, we obtain
the following:

	��
an�r, � �� = � pn

an ln r � pn0
an � Pn

an�r� �4.6a�

	r�
an�r, � �� = − ps

an ln r − ps0
an − Ps

an�r� �4.6b�

where

pn
an = 2�a sin 2� �4.7a�

ps
an = − 2�a cos 2� �4.7b�

pn0
an = 2���a + b�sin 2� + a� cos 2� − s1d�� �4.7c�

ps0
an = 2��− �a + b�cos 2� + a� sin 2� + 1

2s1d� �4.7d�

and

Pn
an�r� = 	̄��

an�r,− ��, �Pn
an�0� = 0�

011004-6 / Vol. 77, JANUARY 2010 Transactions of the ASME

Downloaded 04 May 2010 to 171.66.16.45. Redistribution subject to ASME license or copyright; see http://www.asme.org/terms/Terms_Use.cfm



Ps
an�r� = − 	̄r�

an�r,− ��, �Ps
an�0� = 0�

The tractions as the functions of the boundary length s can be
obtained from Eq. �4.6�:

tn
an�s� = � pn

an ln�s� � pn0
an � Pn

an��s��, s � 0 for plus sign,

s � 0 for minus sign �4.8a�

ts
an�s� = ps

an ln r + ps0
an + Ps

an��s�� �4.8b�

where pn
an and ps

an are the weak singularity intensities of the nor-
mal and tangent tractions at the wedge-tip, respectively; pn0

an and
ps0

an are the values of the finite parts of the normal and tangent
tractions at the wedge-tip, respectively. Equations �4.8a� and
�4.8b� show that the tractions at the wedge-tip consist of two
parts, one being weakly singular, and the other being bounded.
From Eqs. �4.7a� and �4.7b� we obtain the following:

pn
an

ps
an = − tan 2� �4.9�

Equation �4.9�, which is in consistence with Eq. �2.2�, shows that
the weak singularity intensities of the normal and tangent tractions
are dependent. The meaning of Eq. �4.9� has been discussed in the
Sec. 2.

The displacement derivatives with respect to r can be obtained
from Eqs. �4.4a� and �4.4b�:

�u�
an�r,��
�r

= �− 2s3d + a cos 2��ln r + �a + b�cos 2� − a� sin 2�

− 2s3d + i +
� ū�

an�r,��
�r

�4.10a�

�ur
an�r,��
�r

= a sin 2� ln r + �a + b�sin 2� + a� cos 2� + d�

+
� ūr

an�r,��
�r

�4.10b�

Substituting �= �� into Eqs. �4.10a� and �4.10b� yields

�u�
an�r, � ��

�r
= − wn

an ln r − wn0
an − Wn

an�r� �4.11a�

�ur
an�r, � ��

�r
= � ws

an ln r � ws0
an � Ws

an�r� �4.11b�

where

wn
an = 2s3d − a cos 2� �4.12a�

ws
an = − a sin 2� �4.12b�

wn0
an = − �a + b�cos 2� + a� sin 2� + 2s3d − i �4.12c�

ws0
an = − �a + b�sin 2� − a� cos 2� − d� �4.12d�

and

Wn
an�r� = −

� ū�
an�r,− ��

�r
, �Wn

an�0� = 0�

Ws
an�r� =

� ūr
an�r,− ��

�r
, �Ws

an�0� = 0�

The boundary displacement derivatives with respect to s can be
obtained from Eqs. �4.11a� and �4.11b�; the results are

un�
an�s� = wn

an ln�s� + wn0
an + Wn

an��s�� �4.13a�

us�
an�s� = � ws

an ln�s� � ws0
an � Ws

an��s�� ,

s � 0 for plus sign, s � 0 for minus sign �4.13b�

where wn
an and ws

an are the weak singularity intensities of the
normal and tangent displacement derivatives at the wedge-tip, re-
spectively; wn0

an and ws0
an are the values of the finite parts of the

normal and tangent displacement derivatives at the wedge-tip, re-
spectively. Equations �4.8a� and �4.8b� and �4.13a� and �4.13b�
indicate that the tractions and the boundary displacement derivates
of the wedge consist of a finite part and a weakly singular part.
Moreover, the discontinuity value of the finite part at the wedge-
tip has been separated from the other part. In the following, the
relations between tractions and boundary displacement derivates
at the wedge-tip will be determined.

4.2 Tractions Prescribed Problem. If the boundary condi-
tions are tractions prescribed, pn

an, ps
an, pn0

an, and ps0
an in the right

sides of Eqs. �4.8a� and �4.8b� are known. Note that the four linear
algebraic Eqs. �4.7a�, �4.7b�, �4.7c�, and �4.7d� are not indepen-
dent. The unknown constant a, b, and d can be obtained from Eqs.
�4.7a�, �4.7c�, �4.7d�, and �4.7b�, as follows:

a =
pn

an

2� sin 2�
�4.14a�

b =
1

2�Q
�− �� cot 2� + 2�2 +

Q

sin 2�
	pn

an + pn0
an + 2�ps0

an

�4.14b�

d =
� − 1

2�Q
�−

�

sin 2�
pn

an + pn0
an cos 2� + ps0

an sin 2�	
�4.14c�

where Q=sin 2�−2� cos 2�.
Substituting Eqs. �4.14a�, �4.14b�, and �4.14c� into Eqs.

�4.12a�, �4.12b�, �4.12c�, and �4.12d� yields

wn
an =

� + 1

2�Q
�− � Q

� + 1
cot 2� +

�

sin 2�
	pn

an + pn0
an cos 2�

+ ps0
an sin 2�
 �4.15a�

ws
an = −

pn
an

2�
�4.15b�

wn0
an =

1

2�Q
���pn

an + �pn0
an cos 2� + �Q + � sin 2��ps0

an� − i

�4.15c�

ws0
an =

� + 1

2�Q
� �2

sin 2�
pn

an − � Q

� + 1
+ � cos 2�	pn0

an − �ps0
an sin 2�


�4.15d�

The expression of the finite part of the boundary normal displace-
ment derivative Eq. �4.12c� includes a constant i that is irrelevant
to the stress field as shown in Eqs. �4.5a�, �4.5b�, and �4.5c�. In
fact, i is related to a rigid body rotation. The antisymmetric
stresses at the wedge-tip are generally multivalued, hence the
boundary displacement derivatives cannot be calculated from the
stresses through Hooke’s law.

Now consider the case when the infinite wedge subjected to a
uniform loading. It is easy to find that 	̄��

an and 	̄r�
an are zero. Since

the tractions at the wedge-tip do not have any weak singularity,
we have pn

an= ps
an=0. Thus Eqs. �4.14a�, �4.14b�, and �4.14c� be-

come

a = 0
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b =
pn0

an + 2�ps0
an

2�Q

d =
� − 1

2�Q
�pn0

an cos 2� + ps0
an sin 2��

Substitution of the above results into Eqs. �4.4a�, �4.4b�, �4.5a�,
�4.5b�, and �4.5c� yields

ur
an =

r

2�Q
��sin 2� + �� − 1�� cos 2��pn0

an + �2� sin 2� + ��

− 1�� sin 2��ps0
an� �4.16a�

u�
an =

r

2�Q
�− �� + 1��pn0

an cos 2� + ps0
an sin 2��ln r + �pn0

an

+ 2�ps0
an�cos 2�� + ri �4.16b�

and

	rr
an =

1

Q
��sin 2� + 2� cos 2��pn0

an + �2� sin 2� + 2� sin 2��ps0
an�

�4.17a�

	��
an =

1

Q
��− sin 2� + 2� cos 2��pn0

an + �− 2� sin 2�

+ 2� sin 2��ps0
an� �4.17b�

	r�
an =

1

Q
��cos 2� − cos 2��pn0

an + �2� cos 2� − sin 2���ps0
an��

�4.17c�

respectively. Equations �4.16a�, �4.16b�, �4.17a�, �4.17b�, and
�4.17c� are the same with Ting’s results �7�.

For pn
an= ps

an=0, Eqs. �4.15a�, �4.15b�, �4.15c�, and �4.15d� are
simplified to

wn
an =

� + 1

2�Q
�pn0

an cos 2� + ps0
an sin 2�� �4.18a�

ws
an = 0 �4.18b�

wn0
an =

1

2�Q
��pn0

an cos 2� + �Q + � sin 2��ps0
an� − i �4.18c�

ws0
an = −

� + 1

2�Q
�� Q

� + 1
+ � cos 2�	pn0

an + �ps0
an sin 2�


�4.18d�

Equation �4.18a� shows that the boundary normal displacement
derivative is generally weakly singular, while Eq. �4.18b� shows
that the boundary tangent displacement derivative has no weak
singularity. The discontinuous values of the displacement deriva-
tives at the wedge-tip can be obtained from Eqs. �4.18c� and
�4.18d�; the results are as follows:

�un�
an = 0 �4.19a�

�us�
an = −

� + 1

�Q
�� Q

� + 1
+ � cos 2�	pn0

an + �ps0
an sin 2�


�4.19b�

Let �� be the root of the equation

Q = sin 2� − 2� cos 2� = 0

If �=��, the displacement expression �4.16a� and �4.16b� tends to
be infinite; this is a paradox. The paradox was solved by Ting �7�
if the tractions at the corner do not have weak singularities.

4.3 Displacement Prescribed Problem. If the boundary con-
ditions are displacement prescribed, wn

an, ws
an, wn0

an, and ws0
an in the

right sides of Eqs. �4.13a� and �4.13b� are known. From the linear
algebraic equations �4.12a�, �4.12b�, and �4.12d�, we obtain

a = −
ws

an

sin 2�
�4.20a�

b =
1

sin 2�
�−

� − 1

� + 1
�wn

an + �1 +
2�

� + 1
� cot 2�	ws

an − ws0
an


�4.20b�

d =
� − 1

� + 1
�wn

an − ws
an cot 2�� �4.20c�

Substituting Eqs. �4.20a�, �4.20b�, and �4.20c� into Eqs. �4.7a�,
�4.7b�, �4.7c�, and �4.7d� yields

pn
an = − 2�ws

an �4.21a�

ps
an = 2�ws

an cot 2� �4.21b�

pn0
an = − 2���wn

an − �ws
an cot 2� + ws0

an� �4.21c�

ps0
an = 2���� − 1

� + 1
� cot 2� +

1

� + 1
	
wn

an − �� 2�

� + 1
� cot2 2�

+
1

� + 1
cot 2� + �	ws

an + ws0
an cot 2�
 �4.21d�

If ws
an=0, Eqs. �4.21a� and �4.21b� shows that the tractions have

no weak singularity, and Eqs. �4.21c� and �4.21d� are simplified as

pn0
an = − 2���wn

an + ws0
an� �4.22a�

ps0
an = 2���� − 1

� + 1
� cot 2� +

1

� + 1
	wn

an + ws0
an cot 2�


�4.22b�
Equations �4.22a� and �4.22b� can also be obtained through Eqs.
�4.18a� and �4.18c�. Note that the boundary normal displacement
derivative intensity wn

an will not produce any traction weak singu-
larity.

5 Relations of Displacement Derivatives and Tractions
at Corners

Suppose that the tractions at a corner of an elastic body may
have discontinuity of the first kind and weak singularity. Let s be
the boundary length with origin located at the corner, and 2� be
the angle comprised by the two boundary tangent lines at the
corner. In the following, the subscript i may take n or s. The
tractions near the corner are written in the following form:

ti�s� = pi� ln�s� + pi0� + Pi�s�, s � 0 for plus sign,

s � 0 for minus sign �5.1�

where pi� are the traction weak singularity intensities as s→0�,
pi0� are constants, Pi�s� are bounded and continuous functions of
s, and Pi�0�=0. Note that pn� and ps+ are not independent, they
are constrained to Eq. �2.5�. Now expressing tractions near the
corner as the superposition of a symmetric part ti

sy and an anti-
symmetric part ti

an, and letting

pi+
sy = pi

sy, pi0+
sy = pi0

sy, pi+
an = pi

an, pi0+
an = pi0

an

we obtain

pn+ = pn�
sy + pn�

an = pn
sy � pn

an, pn0� = pn0�
sy + pn0�

an = pn0
sy � pn0

an

�5.2a�
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ps� = ps�
sy + ps�

an = � ps
sy + ps

an, ps0� = ps0�
sy + ps0�

an = � ps0
sy + ps0

an

�5.2b�

where

pn
sy =

pn+ + pn−

2
, pn0

sy =
pn0+ + pn0−

2
�5.3a�

pn
an =

pn+ − pn−

2
, pn0

an =
pn0+ − pn0−

2
�5.3b�

ps
sy =

ps+ − ps−

2
, ps0

sy =
ps0+ − ps0−

2
�5.3c�

ps
an =

ps+ + ps−

2
, ps0

an =
ps0+ + ps0−

2
�5.3d�

Suppose that the boundary displacement derivatives may have dis-
continuity of the first kind and weak singularity. The boundary
displacement derivatives near the corner are written in the follow-
ing form:

ui��s� = wi� ln�s� + wi0� + Wi�s�, s � 0 for plus sign,

s � 0 for minus sign �5.4�

where wi� are the weak singularity intensities of the boundary
displacement derivatives as s→0�, wi0� are constants; Wi�s� are
bounded and continuous functions of s, and Wi�0�=0.

Expressing the boundary displacement derivatives near the cor-
ner as the superposition of a symmetric part ui�

sy and an antisym-
metric part ui�

an, and letting

wi+
sy = wi

sy, wi0+
sy = wi0

sy, wi+
an = wi

an, wi0+
an = wi0

an

we obtain the following:

wn� = wn�
sy + wn�

an = � wn
sy + wn

an, wn0� = wn0�
sy + wn0�

an = � wn0
sy

+ wn0
an �5.5a�

ws� = ws�
sy + ws�

an = ws
sy � ws

an, ws0� = ws0�
sy + ws0�

an = ws0
sy � ws0

an

�5.5b�

where

wn
sy =

wn+ − wn−

2
, wn0

sy =
wn0+ − wn0−

2
�5.6a�

wn
an =

wn+ + wn−

2
, wn0

an =
wn0+ + wn0−

2
�5.6b�

ws
sy =

ws+ + ws−

2
, ws0

sy =
ws0+ + ws0−

2
�5.6c�

ws
an =

ws+ − ws−

2
, ws0

an =
ws0+ − ws0−

2
�5.6d�

Let

�pi = pi+ − pi−, �pi0 = pi0+ − pi0−

�pi = pi+ + pi−, �pi0 = pi0+ + pi0−

�wi = wi+ − wi−, �wi0 = wi0+ − wi0−

�wi = wi+ + wi−, �wi0 = wi0+ + wi0−

Next we will consider two kinds of simple boundary valued prob-
lems.

5.1 Tractions Prescribed Problem. Assume that all the trac-
tion components near a corner of an elastic body are known and

Eq. �2.5� is satisfied. Thus, pi� and pi0� are known values. First,
pi

sy, pi0
sy, pi

an, and pi0
an are calculated from Eqs. �5.3a�, �5.3b�,

�5.3c�, and �5.3d�. Then, wi
sy and wi0

sy are calculated from Eqs.
�3.15a�, �3.15b�, �3.15c�, and �3.15d�, wn

an, ws
an, and ws0

an are cal-
culated from Eqs. �4.15a�, �4.15b�, �4.15c�, and �4.15d�. Finally,
the weak singularity intensities and the values of the finite parts of
the boundary displacement derivatives at s=0 are obtained by
using Eqs. �5.5a� and �5.5b� as follows:

wn� =
1

4�

� + 1

Q
�− �Q cot 2�

� + 1
+

1

sin 2�
�	�pn + ��pn0 cos 2�

+ �ps0 sin 2��
 � �ps� �5.7a�

ws� =
1

8�
��� − 1��pn − �� + 1��ps cot 2� � 2�pn� �5.7b�

wn0� =
1

8�Q
�2����pn + ��pn0 cos 2� + �� sin 2�

+ Q��ps0� � Q��� + 1����pn − �ps cot 2�� + 2�ps0�� − i

�5.7c�

ws0� =
� + 1

4�

−

1

2
��pn

2
− �� cot2 2� +

cos 2�

2
+ �	�ps

−
� − 1

� + 1
�pn0 + �ps0 cot 2�
 �

1

Q
� �2

sin 2�
�pn − � Q

� + 1

+ � cos 2�	�pn0 − ��ps0 sin 2�
� �5.7d�

If the tractions at the corner have no weak singularity, i.e., pn�

= ps�=0, we have

tn� = tn�0�� = pn0�, ts� = ts�0�� = ps0�

�tn = �pn0, �ts = �ps0

�tn = �pn0, �ts = �ps0

By using the above expressions, Eqs. �5.7a�, �5.7b�, �5.7c�, and
�5.7d� are simplified to

wn� =
� + 1

4�Q
��tn cos 2� + �ts sin 2�� �5.8a�

ws� = 0 �5.8b�

wn0� =
1

4�
� �

Q
�tn cos 2� + �1 +

�

Q
sin 2�	�ts � �ts
 − i

�5.8c�

ws0� =
1

8�

��� − 1��tn − �� + 1��ts cot 2�� �

2�� + 1�
Q

�� Q

� + 1

+ � cos 2�	�tn + ��ts sin 2�
� �5.8d�

Equation �5.8a� shows that the weak singularities of boundary
normal displacement derivatives are the same when s→0�, i.e.,
wn+=wn−. Therefore, �un�, the discontinuity value of the boundary
normal displacement derivative is only related to the finite part
wn0�. The discontinuous values of the boundary displacement de-
rivatives can be obtained by using Eqs. �5.8a�, �5.8b�, �5.8c�, and
�5.8d� as follows:

�un� =
1

2�
�ts �5.9a�
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�us� =
1

2�Q
��Q + �� + 1�� cos 2���tn + ��� + 1�� sin 2���ts�

�5.9b�

Equations �5.8a�, �5.8b�, �5.8c�, and �5.8d� also show that if the
tractions have no weak singularity, the boundary displacement
tangent derivative has no weak singularity either, but the boundary
normal displacement derivative may have weak singularity. Equa-
tion �5.9a� shows that the discontinuity value of the boundary
normal displacement derivative at the corner is proportional to the
discontinuity value of the tangent traction at the corner. Equation
�5.9b� shows that the discontinuity value of the boundary tangent
displacement derivative at the corner is proportional not only to
the discontinuity value of the normal traction, but also to the sum
of the two tangent tractions at the corner. These results should be
taken care of when BEM is used to solve corner problems.

5.2 Displacement Prescribed Problem. Assume that all the
displacement components near the corner are known. Thus wi�

and wi0� are known values. First, wi
sy, wi0

sy, wi
an, and wi0

an are cal-
culated from Eqs. �5.6a�, �5.6b�, �5.6c�, and �5.6d�. Then, pi

sy and
pi0

sy are calculated from Eqs. �3.22a�, �3.22b�, �3.22c�, and �3.22d�;
pi

an and pi0
an are calculated from Eqs. �4.21a�, �4.21b�, �4.21c�, and

�4.21d�. Finally, the weak singularity intensities and the values of
the finite parts of the tractions at s=0 are obtained by using Eqs.
�5.2a� and �5.2b� as follows:

pn� = ��� + 1

� − 1
�wn cot 2� +

2

� − 1
�ws � �ws
 �5.10a�

ps� = ����wn − �ws cot 2�� �5.10b�

pn0� = �
�� + 1

� − 1
	2� 1

� + 1
− � cot 2�	��wn cot 2� + �ws�

+ 
� + 1

� − 1
�wn0 cot 2� +

2

� − 1
�ws0 � ���wn

− ��ws cot 2� + �ws0��� �5.11a�

ps0� = �
�� − 1

� + 1
� cot 2� +

1

� + 1

�wn − ��

+
cot 2�

� + 1
�2�� cot 2� + 1�
�ws + �ws0 cot 2� � �

−
� + 1

� − 1
���wn cot 2� + �ws� + �wn0
� �5.11b�

If the boundary normal displacement derivative at the corner is
continuous, i.e., wn+=wn−=wn, and the boundary tangent displace-
ment derivative at the corner is zero, i.e., ws�=0, Eqs. �5.10a� and
�5.10b� yield pn�= ps�=0. Hence, Eq. �5.4� is simplified to

un��s� = wn ln�s� + wn0� + Wn�s�, s � 0 for plus sign, s

� 0 for minus sign �5.12a�

us��s� = ws0� + Ws�s�, s � 0 for plus sign, s

� 0 for minus sign �5.12b�

Equations �5.11a� and �5.11b� are simplified to

tn� = ��� + 1

� − 1
��un� cot 2� +

2

� + 1
�us�	 � �− 2�wn − �us��


�5.13a�

ts� = ��2�� − 1

� + 1
� cot 2� +

1

� + 1
	wn + cot 2��us� � �un�


�5.13b�
where

�un� = wn0+ − wn0−, �us� = ws0+ − ws0−, �us� = ws0+ + ws0−

Therefore, the discontinuous values of the tractions at the corner
are as follows:

�tn = − 2��2�wn + �us�� �5.14a�

�ts = 2��un� �5.14b�

6 Numerical Example

6.1 A Square Under Antisymmetric Shear Loading at a
Corner. In order to illustrate the application of the theory devel-
oped in this paper, a singular corner problem with analytical so-
lution needs to be proposed. First consider an infinite antisymmet-
ric wedge of angle � /2 subjected to an antisymmetric shear
loading q as shown in Fig. 4, where A is the wedge-tip. The
analytical displacements and stresses of the antisymmetric wedge
can be obtained by using the results in Sec. 4. Now consider the
unit square ABCD, which is a part of the infinite wedge as shown
in Fig. 4. The tractions on the boundary of ABCD are as follows:

t1 = − q, t2 = 0, 0 � x1 � 1, x2 = 0 �6.1a�

t1 = q�−
2x2

1 + x2
2 + 2 tan−1�1 − x2

1 + x2
	 +

�

2

, t2 = q

1 − x2
2

1 + x2
2 ,

x1 = 1, 0 � x2 � 1 �6.1b�

t1 = − q
1 − x1

2

1 + x1
2 , t2 = q� 2x1

1 + x1
2 − 2 tan−1�1 − x1

1 + x1
	 −

�

2

, 0 � x1

� 1, x2 = 1 �6.1c�

t1 = 0, t2 = q, x1 = 0, 0 � x2 � 1 �6.1d�
The distribution of the shear tractions on ABCD are also shown in
Fig. 4 �the nonzero normal tractions on BC and CD are not shown
in Fig. 4�. The displacements on the boundary of ABCD are as
follows:

u1 =
�b

4
x1, u2 = bx1 ln x1, 0 � x1 � 1, x2 = 0

u1 = −
b

2
x2 ln r2

2 + a tan−1�1 − x2

1 + x2
	 +

�c

4
, u2 =

b

2
ln r2

2

+ ax2 tan−1�1 − x2

1 + x2
	 −

�c

4
x2 �6.2a�

Fig. 4 Square ABCD under antisymmetric shear loading at
corner A
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x1 = 1, 0 � x2 � 1,

u1 = −
b

2
ln r1

2 − ax1 tan−1�1 − x1

1 + x1
	 +

�c

4
x1, u2 =

b

2
x1 ln r1

2

− a tan−1�1 − x1

1 + x1
	 −

�c

4
�6.2b�

x2 = 1, 0 � x1 � 1 �6.2c�

u1 = − bx2 ln x2, u2 = −
�b

4
x2, x1 = 0, 0 � x2 � 1

�6.2d�
where

a = q�� − 1�/2�, b = q�� + 1�/2�, c = q/�, r1
2 = 1 + x1

2,

r2
2 = 1 + x2

2

6.2 Boundary Integration Equations and Numerical
Methods. The displacement and traction boundary integral equa-
tions of an elastic body are �12� as follows:

1

2
uk�y� +�

S

Tki�x;y�ui�x�dS�x� =�
S

Uki�x;y�ti�x�dS�x�

�6.3a�
and

1

2
tk�y� =�

S

Eki�x;y�ti�x�dS�x� −�
S

Fki�x;y�
dui�x�

dS
dS�x�

�6.3b�

where the integration kernel Uki has weak singularity, while the
integration kernels Tki, Eki, and Fki have Cauchy singularities
when the field point x coincides with the source point y. Note that
a sufficient condition for the existence of Cauchy principal value
integral is that density function in the integrand is continuous.
Therefore, the traction BIE �6.3b� requires that tractions and dis-
placement derivatives are continuous at the source points.

In traditional 2D BEMs, boundary displacements and tractions
in an element are often represented by three-node quadratic ele-
ment �BEM3n� shape functions, and the source and field points
share the same nodes, namely, isoparametric element. A singular
boundary point is usually located at an element intersection. Thus
the field variables are always continuous inside an element. An
element with a singular point located at its end is called singular
element. Note that in order to satisfy the sufficient condition for
the existence of Cauchy principal value integral, source point
should not be located at the end point of a singular element. To
overcome this problem, discontinuous element is used for singular
elements, since all nodes in a discontinuous element are internal
points of the element. The price of using discontinuous element is
that the displacement continuity is lost at element intersection
points. Details on discontinuous element can be found in Refs.
�21,22,18�. Single-node quadratic element �SNQE� proposed by
Li et al. �23� and Ke et al. �24� can solve this problem completely.
SNQE has only one internal node, and the boundary displacement
at all element intersection points are automatically continuous.
Furthermore, if an element intersection point is not a singular
point, the boundary displacement derivatives are discontinuous for
BEM3n, but they are also automatically continuous for SNQE.
This fact is very important to get highly accurate numerical re-
sults. SNQE not only can simplify the work of programming but
also improve the computation precision greatly.

6.3 Numerical Results. In this section, BEM will be used to
solve the square problem with displacement boundary conditions

�6.2a�, �6.2b�, �6.2c�, and �6.2d�. In order to obtain accurate nu-
merical results, it is important to determine the singularities of the
boundary displacement derivatives first. The boundary displace-
ment derivatives can be calculated from the prescribed boundary
displacement �6.2a�, �6.2b�, �6.2c�, and �6.2d� as follows:

AB:
du1

dx1
=

�b

4
,

du2

dx1
= b ln x1 + b �6.4a�

BC:
du1

dx2
= −

b

2
ln r2

2 −
bx2

2 + a

r2
2 ,

du2

dx2
=

cx2

r2
2 + a tan−1�1 − x2

1 + x2
	 −

�c

4
�6.4b�

CD:
du1

dx1
= −

cx1

r1
2 + a tan−1�1 − x1

1 + x1
	 +

�c

4
,

du2

dx1
=

b

2
ln r1

2 +
bx1

2 + a

r1
2 �6.4c�

DA:
du1

dx2
= − b ln x2 − b,

du2

dx2
= −

�b

4
�6.4d�

Let A+ denote x2=0, x1→0, and A− denote x1=0, x2→0. At A+

and A−, we have

un+� �s� = −
du2

dx1
, us+� �s� =

du1

dx1
; un−� �s� =

du1

dx2
, us−� �s� =

du2

dx2

By using the above relations, it can be shown from Eqs. �6.4a�,
�6.4b�, �6.4c�, and �6.4d� that the intensities of the weak singular-
ity of boundary normal displacement derivative at A+ and A− are
of equal value −b, while the tangent displacement derivative at
corner A has no weak singularity. The boundary displacement de-
rivatives at corner A is of the same form as Eqs. �5.12a� and
�5.12b�. Hence, it can be concluded that the tractions at corner A
have no weak singularity. The boundary displacement derivatives
at the other three corners of the square are bounded, thus all
tractions are bounded there. The tractions at the four corners of
the square can be obtained by substituting the values of weak
singularities and finite parts of the boundary displacement deriva-
tives calculated from Eqs. �6.4a�, �6.4b�, �6.4c�, and �6.4d� into
Eqs. �5.11a� and �5.11b� ��=� /4� as

Corner A: t1
A+ = − q, t2

A+ = 0; t1
A− = 0, t2

A− = q

�6.5a�

Corner B: t1
B+ = �q, t2

B+ = q; t1
B− = − q, t2

B− = 0

�6.5b�

Corner C: t1
C+ = 0, t2

C+ = �1 − �/2�q; t1
C− = ��/2 − 1�q ,

t2
C− = 0 �6.5c�

Corner D: t1
D+ = 0, t2

D+ = q; t1
D− = − q, t2

D− = − �q �6.5d�

In traditional BEM, at a corner with displacements prescribed
there are four unknown traction components, so, two auxiliary
equations are needed. Since the four traction components are ob-
tained before BEM analysis here, this difficulty does not exist
anymore.

In the following, the square problem with boundary displace-
ment boundary conditions �6.2a� and �6.2b� will be solved by
BEM. For simplicity, let BEM3n and SNQE designate traditional
three-node Lagrangian quadric isoparametric element and single
node quadratic continuous element, respectively, and let TU and
FE designate the displacement boundary integration �Eq. �6.3a��
and traction boundary integration �Eq. �6.3b��, respectively. Four
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possible methods with different combinations of BEM and bound-
ary integration equation are BEM3n_TU, BEM3n_FE, SN-
QE_TU, and SNQE_FE, respectively, where, for example,
BEM3n_TU means that displacement boundary integration �Eq.
�6.3a�� with traditional three-node Lagrangian quadric isopara-
metric element is used to solve an elastic boundary value problem.
It is important to indicate that BEM3n_FE cannot be used, since
the tractions and displacement derivatives represented by the
shape functions of BEM3n in BEM analysis at interelement nodes
are discontinuous. The numerical results of tractions obtained
from various methods will be compared with the theoretical re-
sults �6.1a�, �6.1b�, �6.1c�, and �6.1d�. In all cases, q=1 and 80
equal size elements are used. The numerical results of tractions on
the side AB for 0�x1�0.5 are shown in Figs. 5 and 6.

Figures 5 and 6 show that the numerical results by using SNQE
are in good agreement with the theoretical results, and the result
of SNQE_FE is a little better than that of SNQE_TU. However,
large errors of the numerical results of BEM3n_TU appear near
the corner A. Furthermore, the large errors for BEM3n_TU do not
disappear with increasing numbers of elements that can be shown
in Figs. 7 and 8.

The reason behind the large errors for BEM3n_TU near corner
A comes from the fact that the boundary normal displacement
derivative is weakly singular and the equivalent law of shearing
stresses is not valid at corner A. Since BEM3n_TU is only C0

continuous, it cannot reflect the singular behavior at corner A.
However SNQE is C1 continuous, it can correctly reflect the rela-
tions between the singularities of tractions and boundary displace-
ment derivatives at corner A.

7 Discussions and Conclusions
The theoretical relations between the tractions and the boundary

displacement derivatives at a corner of an elastic body have been
studied in this paper. The prescribed boundary field variables �the
tractions or the boundary displacement derivatives� at the corner
are supposed to have discontinuity of the first kind and weak
singularity but without any higher singularity. The singularity in-
tensities of the unknown boundary variables can be obtained from
the information of prescribed boundary field variables. Especially,
if the boundary conditions at the corner are displacements pre-
scribed, the values of the unknown tractions can be obtained at the
very beginning of the BEM analysis, thus the difficulty of multi-
valued tractions at a corner is solved completely. By using this
information, more appropriate shape functions for the unknown
boundary field variables of a corner element can be constructed,
and the accuracy of the BEM may be greatly increased.
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Modeling and Nonlinear Vibration
Analysis of a Rigid Rotor System
Supported by the Magnetic
Bearing „Effects of Delays of Both
Electric Current and Magnetic
Flux…
Active magnetic bearing (AMB) becomes widely used in various kinds of rotating ma-
chinery. However, as the magnetic force is nonlinear, nonlinear phenomena may occur
when the rotating speed becomes high and delays of electric current or magnetic flux in
the AMB relatively increase. In this paper, the magnetic force in the AMB is modeled by
considering both the second-order delay of the electric current and the first-order delay
of the magnetic flux. The magnetic flux in the AMB is represented by a power series
function of the electric current and shaft displacement, and its appropriate representation
for AMB is discussed. Furthermore, by using them, the nonlinear theoretical analysis of
the rigid rotor system supported by the AMB is demonstrated. The effects of the delays
and other AMB parameters on the nonlinear phenomena are clarified theoretically, and
they are confirmed experimentally. �DOI: 10.1115/1.3172139�

1 Introduction
Active magnetic bearing �AMB� �1,2� is practically used in

various industries because it has the superior features such as no
friction, no wear, and extremely small mechanical loss, compared
with a rolling bearing or a journal bearing. Moreover, the appli-
cation of AMB for the vibration control has been researched �3�.

Because the magnetic force is nonlinear, various nonlinear phe-
nomena, which cannot be clarified by conventional linear analysis,
may occur in the rotor systems supported by magnetic bearing
�4–15�. The jump phenomena �7� and superharmonic resonances
�10� can be given as examples. So far, most of these studies on
such nonlinear phenomena have been based on numerical simula-
tions, and considered special cases such as the case with small
damping effects. These researches may fail to give the solutions
for the nonlinear phenomena in practical systems up to now.

The dynamics of the control system are generated by the factors
such as slight delays of electric current and magnetic flux. When a
high-speed rotor system is supported by the magnetic bearing,
these dynamics of control system become relatively large and not
negligible. Then, they couple with the nonlinearity of the AMB,
and may cause nonlinear phenomena. Thus, the occurrence
mechanism of such nonlinear phenomena and clarification of
these characteristics are important in the vibration suppression of
the high-speed rotor supported by the magnetic bearing. However,
no other research has been reported on the above topic.

Recently, Inoue et al. �16� investigated the nonlinear vibration
of rotor supported by the magnetic bearing considering the effect
of the delay of control force. In that paper, the delay of control
force is simply modeled by the first-order delay of electric current,
and the synergistic effects of both the delay and the nonlinearity
of magnetic force are reported. However, the detailed influence of

the delay of the actual control circuit, which consists of both
electric and magnetic circuits, is not clarified. In order to avoid
vibration problems, the difference of the delay in the electric part
and magnetic part on the vibration characteristic should be clari-
fied.

This study considers the rigid rotor system supported vertically
by the magnetic bearing, and investigates the influences of the
delays of both the electric part and the magnetic part of the AMB
on the dynamical characteristics. Such delays may occur in vari-
ous parts in AMB such as sensors, analog-to-digital �A/D� and
digital-to-analog �D/A� converters, the electric current in the
power amplifier, and the magnetic flux in the electromagnet. This
study performs the nonlinear analysis in order to clarify the effects
of parameters of magnetic bearing on the vibration characteristics,
and confirms the theoretical results by experiments.

2 Theoretical Model

2.1 Equations of Motion for the Rotor System. This study
considers the vertical rigid rotor that is supported by the AMB at
the lower end as shown in Fig. 1. The upper end of the shaft is
simply supported by a ball bearing. Two disks, disk 1 and disk 2,
are mounted on the shaft. The displacement of disk 2 is repre-
sented by the coordinates �x , y�.

The bias electric current of the AMB is I0, and the electric
currents applied for electromagnets x1, x2, y1, and y2, shown in
Fig. 1�b�, are Ix1= I0− ix, Ix2= I0+ ix, Iy1= I0− iy, and Iy2= I0+ iy, re-
spectively. Electromagnetic forces of these electromagnets are ex-
pressed by Fx1, Fx2, Fy1, and Fy2, respectively. Forces Fx1 and Fx2
show the magnetic forces in the x direction, and forces Fy1 and
Fy2 show the magnetic forces in the y direction, respectively.

By using the notation of shaft length l and the relationships x
= l�x and y= l�y, the equations of motion in terms of the shaft
displacements x and y are obtained as

Idẍ + Ip�ẏ = l2�Fx1 − Fx2� + l2me�2 cos �t

Contributed by the Applied Mechanics Division of ASME for publication in the
JOURNAL OF APPLIED MECHANICS. Manuscript received September 8, 2008; final manu-
script received April 28, 2009; published online September 24, 2009. Review con-
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Idÿ − Ip�ẋ = l2�Fy1 − Fy2� + l2me�2 sin �t �1�

where Id is the diametral moment of inertia of the rotor about the
upper support point, Ip is the polar moment of inertia, m is the
equivalent mass at disk 2 position, e is the equivalent static un-
balance at disk 2, � is the rotational speed, and t is time. The
second term in the left side represents gyroscopic effect.

It is assumed that magnetic flux saturation does not occur in the
electromagnet core. In this case, in general, the magnetic flux
density B�T� and the magnetic force fm�N� of the electromagnet
can be represented as follows �1,2�:

B =
�0NI

�2R +
lm

�s
� =

�0NI

2�R + ��

�2�

fm =
B2

2�0
2S = km

I2

�R + ��2

Here, N is the turn number of the coil, I is the electric current, �0
is the magnetic permeability in the vacuum, �s is the relative
permeability of the electromagnet iron core, lm is the magnetic
path length of the electromagnet, S is the area of the electromag-
net pole, and R is the gap between the rotor and the electromagnet.
The notations km=�0SN2 /4 and �= lm /2�s are the characteristic
constants of magnetic force.

In this paper, in order to consider the delay of magnetic flux, the
magnetic force is represented in terms of magnetic flux density.
The four magnetic forces of the AMB, Fx1, Fx2, Fy1, and Fy2
shown in Fig. 1�b�, are represented from Eq. �2� as follows:

Fx1 =
S

�0
�B0 + Bx1�2, Fx2 =

S

�0
�B0 + Bx2�2

�3�

Fy1 =
S

�0
�B0 + By1�2, Fy2 =

S

�0
�B0 + By2�2

Here, B0 is the bias magnetic flux density due to the bias electric
current I0. The notations Bx1, Bx2, By1, and By2 are the variations
of magnetic flux density in electromagnet poles x1, x2, y1, and y2,
respectively. The bias magnetic flux density B0 is obtained from
Eq. �2� as

B0 =
�0N

2

I0

�R0 + ��
�4�

Here, R0 is the equilibrium gap.
Thus, the equations of motion, Eq. �1�, are re-arranged in terms

of the magnetic flux density as

Idẍ + Ip�ẏ = l2 S

�0
��B0 + Bx1�2 − �B0 + Bx2�2� + l2me�2 cos �t

�5�

Idÿ − Ip�ẋ = l2 S

�0
��B0 + By1�2 − �B0 + By2�2� + l2me�2 sin �t

2.2 Dynamical Equations of the Electric Circuit and the
Magnetic Circuit. It is known that the magnetic flux density of
the electromagnet shows the characteristic that is similar to the
first-order dynamical characteristic �2�. In this paper, it is assumed
that the variations of magnetic flux densities Bx1 , . . . ,By2 around
the bias magnetic flux density B0 have the first-order dynamical
characteristics, and they are represented as follows �2�:

B0 + Bx1 + �Ḃx1 =
�0N

2

�I0 − ix�
�R0 + � − x�

B0 + Bx2 + �Ḃx2 =
�0N

2

�I0 + ix�
�R0 + � + x�

�6�

B0 + By1 + �Ḃy1 =
�0N

2

�I0 − iy�
�R0 + � − y�

B0 + By2 + �Ḃy2 =
�0N

2

�I0 + iy�
�R0 + � + y�

Here, ix and iy are the electric current variations of the
electromagnets.

There are many types of power operational amplifiers, which
supply only positive electric current. Furthermore, in order to
avoid the destabilization, the electromagnet current is usually not
supplied when the reference �ordered� value becomes negative.
When such an amplifier is used or such a control method is ap-
plied, the right sides of Eq. �6� show piecewise characteristics. For
example, the right side of the first equation of Eq. �6� becomes

B0 + Bx1 + �Ḃx1 = 	�0N

2

�I0 − ix�
�R0 + � − x�

�ix � I0�

0 �ix � I0�

 �7�

Next, the dynamical equations of the electric current variations ix
and iy are represented. In this modeling, the characteristics of a
current-control-type power amplifier, which is used in the experi-
ment, are taken into consideration. Figure 2 shows the block dia-
gram of such a current-control-type power amplifier, and it shows
the dynamics of electric current variation ix. Symbols KPI, KII, and
KI are the parameters in the power amplifier, and symbols R and L
are the parameters, which denote the resistance and the inductance
of the coil. The input signal Ic and the output current I of the
power amplifier are Ic=KI�I0+kpx+kdẋ� and I= I0+ ix, respec-
tively. The parameters kp and kd are the feedback coefficients for
displacement and velocity of the rotor. The used power amplifier

Disk1

Electromagnet

Rigid shaft

Backup-bearing

Simple support

(ball bearing)

z

x

(a)

Disk2

y

x

(b)

x1x2

y1

y2

Fy1

Fx1Fx2

Fy2

Fig. 1 Model of the AMB and the rotor system

s

K
K II

PI
+

LsR +
1

IK

IcI

+ -

power amplifier

coil

Fig. 2 Block diagram of the amplifier
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has the PI control characteristic. From the block diagram, the
governing equation of the electric current variation ix can be de-
rived as

ix + �1iẋ + �2iẍ = kpx + kvẋ + kaẍ �8�

where �1 and �2 are the coefficients of the first- and second-order
derivatives of the electric current variation. These coefficients are
determined in terms of the parameters of power amplifier and coil
as follows:

�1 =
R + KIKPI

KIKII
, �2 =

L

KIKII
, kv = kd +

KPI

KII
kp, ka =

KPI

KII
kd �9�

The governing equation of the electric current variation iy is also
derived in the same manner.

2.3 Dimensionless Form. By using the coefficient of the
electromagnet km=�0SN2 /4, by eliminating the time derivative
terms in Eqs. �6� and �8�, and by performing the system lineariza-
tion of Eqs. �5� and �6� for the equilibrium position, the stiffness
coefficient k of the linearized system, Idẍ+ Ip�ẏ+kx
= l2me�2 cos �t, is obtained as k=4l2kmI0�kp− I0 / �R0+��� / �R0

+��2. Then, by using the natural frequency p=�k / Id for the non-
rotating condition, the dimensionless values are obtained as

iṕ = Ip/Id, �́ = �/p, t́ = tp, é = l2me/�IdR0�

x́ = x/R0, ý = y/R0, ix́ = ix/I0, iý = iy/I0

Bx1
´ = Bx1/B0, Bx2

´ = Bx2/B0, By1
´ = By1/B0, By2

´ = By2/B0

�10�
kṕ = kpR0/I0, kd́ = kdR0p/I0, kv́ = kvR0p/I0

ká = kaR0p2/I0, kḿ =
l2I0

2km

kR0�R0 + ��2

�1´ = �1p, �2´ = �2p2, �́ = �p, �́ = �/R0

Thus, the dimensionless forms of the equations of motion, Eqs.
�5�, �6�, and �8�, are represented as

ẍ� + ip��ẏ� = km� ��1 + Bx1� �2 − �1 + Bx2� �2� + e���2 cos ��t�
�11�

ÿ� − ip��ẋ� = km� ��1 + By1� �2 − �1 + By2� �2� + e���2 sin ��t�

1 + Bx1� + ��Ḃx1� = 	�1 + ���� 1 − ix�

1 + �� − x�
� �ix� � 1�

0 �ix� � 1�



1 + Bx2� + ��Ḃx2� = 	�1 + ���� 1 + ix�

1 + �� + x�
� �ix� � − 1�

0 �ix� � − 1�



�12�

1 + By1� + ��Ḃy1� = 	�1 + ���� 1 − iy�

1 + �� − y�
� �iy� � 1�

0 �iy� � 1�



1 + By2� + ��Ḃy2� = 	�1 + ���� 1 + iy�

1 + �� + y�
� �iy� � − 1�

0 �iy� � − 1�



�2�ïx� + �1�i̇x� + ix� = kp�x� + kv�ẋ� + ka�ẍ�
�13�

�2�ïy� + �1�i̇y� + iy� = kp�y� + kv�ẏ� + ka�ÿ�

In the following analysis, these equations in the dimensionless
form are used. The symbol � ��, which denotes dimensionless
value, is omitted.

Table 1 shows the system parameters used in this paper. The
feedback coefficients kp and kd are designed by the optimal regu-
lator theory. The obtained values of the feedback coefficients kp
and kd for the parameters in Table 1 are kpopt=1.062 A /mm and
kdopt=0.01149 A s /mm in dimensional form. In this paper, the
standard values of kp and kd are set to kp=1.1 A /mm and kd

=0.007 A s /mm. The natural frequency p=�k / Id in the nonrotat-
ing condition is calculated for these standard values of kp and kd
and the values of Table 1, and is obtained as p=83.856 rad /s
��800 rpm� as shown in Table 2.

2.4 Power Series Approximate Model for Magnetic Flux
Density. Figure 3 shows the magnetic flux density �1+Bx1� in the

static case �Ḃx1=0� of Eq. �12�. In the usage of conventional non-
linear analysis techniques, such an expression with piecewise
characteristic is not suitable. Thus, this paper introduces the ex-
pression of the magnetic flux density, which is represented in
terms of power series function of both the electric current and
shaft displacement.

First, the power series approximation for Eq. �12� is performed,
and then, the accuracy of approximation is investigated by com-
paring the numerical simulation results obtained from the case of
piecewise model and the case of power series approximation
model. As the result, it is clarified that at least the seventh-order
power series function is required for the accurate approximation.
In the case of seventh-order power series function, 35 terms ap-

Table 1 Parameter values

KPI 15.0 V/V
KI 1.0 V/A
R0 0.8 mm
I0 0.5 A
Id 5.43	105 kg mm2

m 2.043 kg
�1 3.795	10−2 s
� 3.66	10−3 s
KII 606 V /V s
km 1.56	104 kg mm3 /A2 s2

� 0.141 mm
l 5.00	102 mm
Ip 1.33	104 kg mm2

e 2.928	10−2 mm
�2 2.29	10−5 s2

N 300 turns

Table 2 Values used in nondimensionalization „feedback pa-
rameter values and natural frequency… and delay coefficient in
dimensionless value

Dimensional value Dimensionless value

kp0 1.100 A/mm 1.76
kd0 0.007 A s /mm 0.587
p 800 rpm 1.0
R0 0.8 mm 1.0
I0 0.5 A 1.0
�10 3.795	10−2 s 3.180
�20 2.29	10−5 s2 0.161
�0 3.66	10−3 s 0.307
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pear in the approximation of each electromagnet, and the total
number of the terms for the AMB attains 140, which is a large
number for the nonlinear theoretical analysis.

Then, the more appropriate transformation of the expression of
magnetic flux density is considered in order to reduce the number
of power series terms. To this end, the first term of the right side
of the Eq. �11� is noted, and is arranged as

km��1 + Bx1�2 − �1 + Bx2�2� = km�2 + Bx1 + Bx2��Bx1 − Bx2�


km�2 + Bxp�Bxm �14�

where the new variables of magnetic flux density Bxp=Bx1+Bx2
and Bxm=Bx1−Bx2 are introduced. The governing equations of Bxp
and Bxm are obtained by the calculations of addition and subtrac-
tion of the first and second equations in Eq. �12� as

2 + Bxp + �Ḃxp =	
�1 + ��� 1 − ix

1 + � − x
� �ix � − 1�

�1 + ���� 1 − ix

1 + � − x
� + � 1 + ix

1 + � + x
�� �− 1 � ix � 1�

�1 + ��� 1 + ix

1 + � + x
� �1 � ix�



Bxm + �Ḃxm =	

�1 + ��� 1 − ix

1 + � − x
� �ix � − 1�

�1 + ���� 1 − ix

1 + � − x
� − � 1 + ix

1 + � + x
�� �− 1 � ix � 1�

− �1 + ��� 1 + ix

1 + � + x
� �1 � ix�


 �15�

The governing equations of Byp and Bym in the y direction are also
derived in the same manner.

Figures 4�a� and 5�a� show the values of the terms in the right
sides of Eq. �15�. From the observations of Figs. 4�a� and 5�a�, it
seems that the proposed expressions of Bxp and Bxm can be repre-
sented by even and odd order power series functions of x and ix,
respectively. In this paper, they are represented up to the seventh-
order terms as

2 + Bxp + �Ḃxp = 2 + a20x
2 + a11xix + a02ix

2 + a40x
4 + a31x

3ix

+ a22x
2ix

2 + a13xix
3 + a04ix

4 + a60x
6 + a51x

5ix

+ a42x
4ix

2 + a33x
3ix

3 + a24x
2ix

4 + a15xix
5 + a06ix

6

Bxm + �Ḃxm = a10x + a01ix + a30x
3 + a21x

2ix + a12xix
2 + a03ix

3

+ a50x
5 + a41x

4ix + a32x
3ix

2 + a23x
2ix

3 + a14xix
4

+ a05ix
5 + a70x

7 + a61x
6ix + a52x

5ix
2 + a43x

4ix
3

+ a34x
3ix

4 + a25x
2ix

5 + a16xix
6 + a07ix

7 �16�

In this modeling, the total number of terms in the AMB is reduced
from 140 to 70, which is a half of the case of power series ap-
proximation for Eq. �12�.

In the coefficients a10, . . . ,a07 in Eq. �16�, the linear coefficients
a10 and a01 are obtained analytically from Eq. �15�, and the other
nonlinear coefficients are obtained by using the least square

method. These dimensionless values aij depend only on the value
of � because the expressions in the right sides of Eq. �15� have
only the parameter �. When the dimensionless value �=0.141 for
the experimental setup is substituted in Eq. �15�, the coefficients
a10, . . . ,a07 are obtained as

a10 =
2

1 + �
, a01 = − 2, a20 = 1.667, a11 = − 1.709, a02 = − 0.158

a30 = 1.430, a21 = − 1.120, a12 = − 0.151, a03 = − 0.267

a40 = 0.109, a31 = − 1.114, a22 = − 0.303, a13 = − 0.046

a04 = 0.245, a50 = 0.052, a41 = − 1.394, a32 = − 0.257

a23 = − 0.382, a14 = 0.232, a05 = 0.406

a60 = 2.310, a51 = − 1.837, a42 = 0.276, a33 = 0.215

a24 = 0.192, a15 = 0.080, a06 = − 0.032

a70 = 2.016, a61 = − 1.424, a52 = 0.211, a43 = 0.396

a34 = 0.170, a25 = 0.152, a16 = − 0.036, a07 = − 0.099

�17�
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Fig. 3 Magnetic flux density Bx1 „piecewise function
expression…
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In this calculation of the least square method, the data of the
ranges −1.5� i�1.5 and −0.75�x�0.75 are used.

Figures 4�b� and 5�b� show the values of the right sides in Eq.
�16�. It is shown that they are satisfactory approximations of Figs.
4�a� and 5�a�.

3 Nonlinear Theoretical Analysis
Figure 6 shows the time histories of the rotor displacement,

control current, and the magnetic flux density at the rotational
speed �=1.18, which is close to the resonance peak. The orbits of
rotor displacement, control current, and magnetic flux density
Bxm ,Bym show the circle shape, and their spectrum diagram shows
only � component. The orbit of magnetic flux density Bxp ,Byp
shows a line shape, and its spectrum diagram shows both constant
component and 
2� components.

In this paper, the method of Van der Pol �18� is used for the
nonlinear theoretical analysis. In this method, the solution is as-
sumed first based on the observation and insight, and it is substi-
tuted into the equation of motion. Then, a set of the fundamental
equations with unknown variables is derived in a harmonic bal-

ance manner, but it includes the terms of the time derivative of the
unknown variables. Hence, by this method, the stability of the
steady state solution is also able to analyze �18�.

In this case, from the observation of Fig. 6, the solution is
assumed as

x = Pc cos �t − Ps sin �t, y = Ps cos �t + Pc sin �t

ix = Cic cos �t − Cis sin �t, iy = Cis cos �t + Cic sin �t

Bxm = Bmc cos �t − Bms sin �t, Bym = Bms cos �t + Bmc sin �t

Bxp = Bxa + Bpc cos 2�t − Bps sin 2�t

Byp = Bya − Bpc cos 2�t + Bps sin 2�t �18�

The number of the variables is ten in this case. For the compari-
son, if the solution was assumed for the equations in terms of Bx1,
Bx2, By1, and By2, the number of the variables would be at least
14. Therefore, the proposed expression of Eq. �16� can reduce the
number of the variables in the assumed solution. It makes the
nonlinear theoretical analysis much simpler.
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Fig. 4 Comparison between two expressions „Bxp…: „a… piecewise model and „b… seventh-order
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Equation �18� is substituted into equations of motion, Eqs. �11�,
�13�, and �16�. Here, variables Pc, Ps, Cic, Cis, Bmc, Bms, Bpc, Bps,
Bxa, and Bya are assumed to be “functions, which vary slowly with

the time” �17,18�. Thus, for example, the magnitudes of Ṗc and P̈c
are considered as O��� and O��2�, respectively. Here, the symbol
O��� expresses the magnitudes of the same order as the small
parameter �. The coefficients of sin�t and cos �t on both sides of
the six equations, which are Eqs. �11� and �13� and the second
equation of Eq. �16�, are equated in the accuracy of O���. Further-
more, the constant components and the coefficients of sin 2�t and
cos 2�t on both sides of the first equation of Eq. �16� are equated
in the accuracy of O���. Then, the following fundamental equa-
tions are obtained as follows. The seventh-order power series ex-
pression of Eq. �16� is used in this calculation. The concrete forms
of these equations are not shown for the sake of brevity.

Ṗc = f1�Pc,Ps,Cic,Cis,Bmc,Bms,Bpc,Bps,Bxa,Bya�

Ṗs = f2�Pc, . . . ,Bya�

Ċic = f3�Pc, . . . ,Bya�, Ċis = f4�Pc, . . . ,Bya�

Ḃmc = f5�Pc, . . . ,Bya�, Ḃms = f6�Pc, . . . ,Bya�

Ḃxa = f7�Pc, . . . ,Bya�, Ḃya = f8�Pc, . . . ,Bya�

Ḃpc = f9�Pc, . . . ,Bya�, Ḃps = f10�Pc, . . . ,Bya� �19�

The steady state solutions, Pc0, Ps0, Cic0, Cis0, Bmc0, Bms0, Bpc0,
Bps0, Bxa0, and Bya0, are obtained by setting the derivative terms
on the left sides of Eq. �19� equal to 0 and by solving these
nonlinear algebraic equations. The stability of these obtained

steady state solutions is investigated by the eigenvalue analysis.
Figure 7 shows the resonance curves of the amplitude P of the

harmonic component +�. The abscissa shows the rotational speed
�, which is the dimensionless value to the natural frequency p.
The ordinate r shows the shaft amplitude, which is the dimension-
less value to the equilibrium gap R0. Both values p and R0 are
shown in Table 2. The values of parameters kp, kd, and I0 are the
dimensionless value denoting the ratio from the dimensional val-
ues in Table 2. The line represents the solution obtained from Eq.
�19�, and the solid line denotes the stable solution. The circle
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symbol represents the result of numerical simulation, and the open
circle denotes the amplitude of steady state solution.

4 Influences of Parameters
In this section, the values of kp, kd, and bias current I0 shown in

Table 2 are set as the standard values. The influences of these
parameters are investigated by changing the dimensionless param-
eter values from these standard values.

4.1 Influences of Feedback Coefficients. Figure 8 shows the
influence of the position-feedback coefficient kp on the resonance
curve. Both the dashed line and the dashed-dotted line represent
the unstable solutions. The dashed line denotes the instability for
the case with a positive real eigenvalue, and the dashed-dotted
line denotes the instability for the case with a pair of conjugate
complex eigenvalues with a positive real part, which indicates the
occurrence of the Hopf bifurcation �19,20�. The solid circles con-
nected with a vertical line denote the maximum and minimum
amplitudes of almost periodic motion �20�.

The agreement of the resonance curve and the numerical result
indicates the validity of the theoretical analysis. As the value of kp
increases from the standard value kp0=1.76, the peak amplitude of
the major critical speed increases, and the resonance curve shows
a soft spring type shape. The saddle-node bifurcation occurs at
point B when kp=1.41kp0. The solid circles with a vertical line
indicating the occurrence of Hopf bifurcation occurs along the
dashed-dotted curve from the higher speed side �19,20�. It shows
that the almost periodic vibration occurs in the numerical simula-
tion around this dashed-dotted curve. The time histories, orbit, and
spectra of the almost periodic motion at point C are shown in Fig.
9.

Figure 10 shows the influence of the velocity-feedback coeffi-
cient kd on the resonance curve. As the value of kd increases from
the standard value kd0=0.587, the damping effect generated by
electromagnet increases. As the result, the maximum amplitude of
the major critical speed decreases.

4.2 Influence of the Bias Electric Current. Figure 11 shows
the influence of the bias electric current I0. The feedback coeffi-
cients kp and kd are calculated for each value of I0 by optimal
regulator theory. The value I0=1.0 shown in Table 2 is set as the
standard value in this parameter study. As the value of bias current
I0 decreases from 1.0, the linear spring coefficient of the magnetic
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positive real eigenvalue, dashed-dotted line: unstable solution
for the case with a pair of conjugate complex eigenvalues with
a positive real part „due to Hopf Bifurcation…, solid circle: maxi-
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parameters kp, kd, and I0 are shown in Table 2.
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bearing decreases, and the critical speed moves to the lower speed
side. In this case, the vibration amplitude becomes large, and the
resonance curve becomes the soft spring type shape due to the
effect of magnetic force nonlinearity. The saddle-node bifurcation
occurs, and the almost periodic vibration occurs at around �
=0.742 in the numerical simulation for the case I0=0.56
�=0.28 A�.

4.3 Influence of the Electric Current Delay. The dynamical
characteristic of the magnetic force is influenced by the delays of
electric current that depends on the electric circuit of power am-
plifier. Figures 12�a� and 12�b� show the influence of the electric
current delays �1 and �2. The values �1=3.180 and �2=0.161 are
the dimensionless values of the dimensional value shown in Table
1, and are set as the standard values in this parameter study.

As the value of �1 increases as shown in Fig. 12�a�, the ampli-
tude of the vibration increases, and the resonance point decreases.
However, neither softening nor hardening effect appears.

While, as the value of �2 increases as shown in Fig. 12�b�, the
amplitude of the vibration increases, and the resonance point
slightly increases. Furthermore, softening effect appears in the
larger amplitude area. In such area, the curve becomes unstable
due to Hopf bifurcation, and almost periodic motion occurs in the
numerical simulation.

4.4 Influence of the Magnetic Flux Delay. The dynamical
characteristic of the magnetic force is also influenced by the de-
lays of magnetic flux that depends on the material of electromag-
net core. Figure 13 shows the influence of the magnetic flux delay
�. The value �0=0.307 is the dimensionless value of the dimen-
sional value �0=3.66	10−3 s shown in Table 1, and it is set as
the standard value in this parameter study. As the value of �
increases, the amplitude of the vibration increases, and the reso-
nance curve shows the soft spring type. The curve becomes un-
stable at the large amplitude area due to Hopf bifurcation.

5 Experiment

5.1 Experimental Setup. The experimental setup is shown in
Fig. 14. A rigid shaft with a circular cross section is simply sup-
ported at the upper side by a self-aligning double-row ball bearing
and supported at the lower side by a magnetic bearing. This shaft
is driven by the motor, which is connected to the upper end of the
shaft via a flexible coupling. The material of the shaft is stainless
steel, and the length of the shaft is ls=600 mm and its diameter is
�s=20 mm. The positions of disks 1–3 from the upper end of the
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Fig. 10 Influence of feedback coefficient kd: solid line: stable
solution, dashed line: unstable solution for the case with a
positive real eigenvalue, dashed-dotted line: unstable solution
for the case with a pair of conjugate complex eigenvalues with
a positive real part „due to Hopf Bifurcation…, solid circle: maxi-
mum and minimum amplitudes almost periodic motion, and
open circle: amplitude of steady state oscillation. The dimen-
sional values of parameters kp, kd, and I0 are shown in Table 2.
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shaft are 276 mm, 487 mm, and 342.5 mm, respectively. The
diameter and the thickness of disk 1 are 200 mm and 10 mm. The
diameter and the thickness of disk 2, which is the rotor of the
magnetic bearing, are 80 mm and 30 mm. The shaft displacements
in the x and y directions are measured at the position of disk 3 by
eddy-current sensors. The diameter and the thickness of disk 3 are
44 mm and 24 mm. The radius gap of the magnetic bearing is
R0=0.8 mm, and the radius gap of the backup bearing is 0.6 mm.
The turn number of each electromagnet coil of AMB is 300 turns.

The electric currents and gaps of four electromagnets are mea-

sured, and the coefficients km and � corresponding to Eq. �2� are
calculated for all electromagnets. Table 3 shows the obtained re-
sults. When the coefficients km and � are measured, some differ-
ences among four magnets are inevitable due to the causes such as
irregularity of the turn number of coil, differences among the
power amplifiers, and so on. In this study, the influence of these
differences among magnets is eliminated by tuning the bias cur-
rent I0 for each magnet.

5.2 Experimental Results. Experiments were performed by
changing the feedback coefficients, kp and kd, and bias current I0.
The fundamental values of these parameters were set as kp
=1.5 A /mm, kd=0.007 A s /mm, and I0x=0.5 A. The current I0y
was tuned for each case.

Figure 15 shows the influence of the displacement feedback
coefficient kp. As the value of kp increased, the resonance point
increased and the resonance curve began to show soft spring type
nonlinear characteristics. The case of kp=1.5 A /mm in Fig. 15
indicated the occurrence of the jump phenomena, and showed the
existence of the rotational speed range with multiple stable solu-
tions by a shaded area. By comparing Fig. 15 with the theoretical
result shown in Fig. 8, the theoretical results are validated quali-
tatively by the experiments in the following points such as the
values of critical speeds, the shapes of resonance curves, and the
occurrences of the saddle-node bifurcations.

Figure 16 shows the influence of the velocity-feedback coeffi-
cient kd. As the value of kd decreased, the resonance point did not
move so much and only the amplitude of the resonance curve
increases. These experimental results shown in Fig. 16 validated
qualitatively the theoretical result shown in Fig. 10.

Figure 17 shows the influence of the bias current I0. As the
value of I0 decreased, the resonance point decreased and the reso-
nance curve began to show soft spring type nonlinear characteris-
tics. Figure 17 validated qualitatively the theoretical result shown
in Fig. 11.

6 Conclusions
This paper considers the dynamical characteristics of the rigid

rotor system supported vertically by the magnetic bearing. Both
the effects of magnetic force nonlinearity and the dynamics of
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Fig. 13 Influence of the Magnetic Flux Delay �: solid line:
stable solution, dashed line: unstable solution for the case with
a positive real eigenvalue, dashed-dotted line: unstable solu-
tion for the case with a pair of conjugate complex eigenvalues
with a positive real part „due to Hopf Bifurcation…, solid circle:
maximum and minimum amplitudes almost periodic motion,
and open circle: steady state oscillation. The value �0=0.307 is
the dimensionless value of the dimensional value �0=3.66
Ã10−3 s shown in Table 1. The dimensional values of param-
eters kp, kd, and I0 are shown in Table 2.
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Fig. 14 Experimental model

Table 3 Coefficients of electromagnets

km
�kg m3 /A2 s2�

�
�m�

Electromagnet A 1.19	10−5 0.015	10−3

Electromagnet B 1.88	10−5 0.229	10−3

Electromagnet C 1.47	10−5 0.133	10−3

Electromagnet D 1.69	10−5 0.187	10−3
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Fig. 15 Experimental results „influence of feedback coefficient
kp…
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control system are clarified. Especially, the influences of the de-
lays of both the electric current and the magnetic flux are ex-
plained. The following results are obtained.

This study proposes the nonlinear power series approximation
model for the magnetic flux of magnetic bearing. This model can
substitute the piecewise characteristics of the magnetic flux,
which is caused by the general control procedure of the AMB or
by the directional characteristic of the power amplifier. Especially,
the expression of the set of magnetic flux in magnetic bearing is
considered and new representation is proposed. By using this ex-
pression, the number of the terms, which are required for the
power series approximation, is reduced to be a half. Furthermore,
the number of the variables, which are required in the nonlinear
theoretical analysis, is also reduced. Therefore, this expression of
the set of magnetic flux makes the nonlinear theoretical analysis
much simpler. By using this model, the nonlinear vibration analy-
sis is performed on the rotor system supported by the magnetic
bearing including the delay of magnetic force.

The analytical procedure of the nonlinear vibration analysis of
the rotor system supported by the magnetic bearing including the
delay in both the electric and magnetic circuits is developed. By
using this procedure, the fundamental analytical equations are ob-
tained, and the nonlinear dynamical characteristics of the rigid
rotor system supported by the magnetic bearing are clarified theo-
retically. Especially, the effects of parameters of the magnetic
bearing are explained.

When the coefficient of position feedback increases or the bias
electric current decreases, the resonance curve shows soft spring
characteristic and saddle-node bifurcation, which leads the rota-
tional speed range with multiple stable solutions to occur. Con-
cerning on the delay coefficients, the second order of electric cur-
rent delay and the first order of magnetic flux delay have effects
on the nonlinear phenomena. Therefore, the nonlinear phenomena
in the rotor system supported by the AMB are due to the nonlin-
earity of the magnetic bearing, and it appears strongly as the de-
lays of the electric current or the magnetic flux increase. The
obtained theoretical results, such as the jump phenomena and the
existence of the rotational speed range with multiple stable solu-
tions, are confirmed by the experiments.

The outcomes of this study enable us to analyze the nonlinear
vibration characteristics of the rigid rotor system supported by the
active magnetic bearing.
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The Bounds on the Coefficients of
Restitution for the Frictional
Impact of Rigid Pendulum
Against a Fixed Surface
Upper bounds on Newton’s, Poisson’s, and energetic coefficients of normal restitution for
the frictional impact of rigid pendulum against a fixed surface are derived, demonstrating
that the upper bound on Newton’s coefficient is smaller than 1, while the upper bound on
Poisson’s coefficient is greater than 1. The upper bound on the energetic coefficient of
restitution, which is a geometric mean of Newton’s and Poisson’s coefficients of normal
restitution, is equal to 1. Lower bound on all three coefficients is equal to zero. The
bounds on the tangential impact coefficient, defined by the ratio of the frictional and
normal impulses, are also derived. Its lower bound is negative, while its upper bound is
equal to the kinetic coefficient of friction. Simplified bounds in the case of a nearly
vertical impact are also derived. �DOI: 10.1115/1.3172198�

Keywords: bounds, coefficient of restitution, energy loss, frictional impact, impulse,
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1 Introduction
The determination of the rebounding velocity components of

colliding bodies is an old mechanics problem, with its origin in
early work by Newton and Poisson. Newton defined the coeffi-
cient of normal restitution as the ratio of the relative normal ve-
locities after and before the impact. In contrast to Newton’s kine-
matic definition, Poisson’s kinetic definition is based on the ratio
of the magnitudes of the normal impulses corresponding to the
periods of restitution and compression. In the absence of friction
�frictionless impact�, the Poisson definition of the coefficient of
normal restitution yields the same expression, in terms of the rela-
tive velocities, as does the Newton definition, which is demon-
strated in standard dynamics textbooks, e.g., Ref. �1�. In the pres-
ence of friction, however, the two definitions are, in general, not
equivalent. The simplest theory of the frictional impact is that of
Whittaker �2�, in which it is assumed that the frictional impulse is
in the slip direction and is equal to the product of the coefficient
of friction and the magnitude of the normal impulse. Kane �3�
observed that this theory leads to an increase in kinetic energy
upon the impact of a double pendulum with a rough horizontal
surface, for some values of the coefficients of friction and normal
restitution, and for some kinematic parameters of motion. Keller
�4� explained this by noting that Whittaker’s theory �2� applies
only when the direction of sliding is constant throughout the col-
lision. If there is a reversal of the slip direction during the impact
process, the coefficient of the proportionality between the tangen-
tial and normal impulses is different from the coefficient of kinetic
friction. Keller’s �4� analysis also demonstrated the advantage of
using the normal impulse as an independent variable, instead of
physical time, to cast and analyze the governing differential equa-
tions of motion during the impact process. Stronge �5� introduced
an energetic coefficient of normal restitution, whose square is
equal to the negative ratio of the elastic strain energy released
during restitution and the internal energy of deformation absorbed
during compression phase of the impact. Numerous papers, pro-

posing different models of frictional impact, were published since.
A comprehensive treatment of the subject, with a historical out-
line, can be found in the monographs or review articles �6–9�.

In this paper we revisit a classical problem of frictional impact
of rigid pendulum against a fixed surface. By employing Keller’s
�4� method of analysis, we derive the expressions for the angular
velocity in terms of the monotonically increasing normal impulse
during the impact process. Three different definitions of the coef-
ficient of normal restitution are used to specify the rebounding
angular velocity and the total normal impulse: Newton’s kine-
matic, Poisson’s kinetic, and Stronge’s energetic definitions. It is
shown that the energetic coefficient of normal restitution is a geo-
metric mean of the Newton and Poisson coefficients of normal
restitution. The upper bounds on all three coefficients are estab-
lished, demonstrating that the upper bound on the Newton coeffi-
cient is smaller than 1, while the upper bound on the Poisson
coefficient is greater than 1. For the pendulum striking a rough
surface elastically, without dissipation due to deformation, the
Newton and Poisson coefficients are the reciprocals of each other.
If, upon the impact, the pendulum sticks to the ground, there is no
restitution phase of the impact, and all three coefficients of normal
restitution are equal to zero, which represents their lower bound.
The bounds on the tangential impact coefficient, defined by the
ratio of the frictional and normal impulses, are also derived. Its
lower bound is negative, while its upper bound is equal to the
kinetic coefficient of friction. Simplified bounds in the case of a
nearly vertical impact are also derived.

2 Rigid Pendulum Striking a Fixed Surface
Figure 1 shows a rigid pendulum, rotating around a frictionless

pin at O and striking a fixed horizontal surface at the point with
coordinates �a ,−b�, relative to the origin at O. The �incidence�
angular velocity of the pendulum just before the impact is �−

�0 �negative value indicating its clockwise direction�. If �+�0 is
the �rebounding� angular velocity immediately after the impact of
duration t1, then, by the impulse principle,
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J0�− +�
0

t1

�Na + Fb�dt = J0�+ �1�

where J0 is the pendulum’s moment of inertia about the point O,
and N and F are the normal and friction forces acting on the
pendulum at the contact point with the rough horizontal surface.
The coordinates of the contact points a and b change only infini-
tesimally during the time of the impact t� �0, t1�, so that the equa-
tion of motion during the impact is

J0
d�

dt
= Na + Fb �2�

The weight of the pendulum mg, as a nonimpulsive force, does
not contribute to Eqs. �1� and �2�. Following Ref. �4� and intro-
ducing a monotonically increasing impulse parameter �Fig. 2�

� =�
0

t

Ndt, d� = Ndt �3�

Eq. �2� can be recast as

J0d� = �a + b
F

N
�d�, � � �0,�1�, �1 =�

0

t1

Ndt �4�

Since a and b are nearly constant during the impact process, Eq.
�4� can be integrated to give

J0�� − �−� = a� + b�
0

�
F

N
d� �5�

Let 0��0��1 correspond to the instant t0 when the angular ve-
locity momentarily vanishes, ���0�=0, and the slip reversal takes
place at the transition between the compression and restitution
phases of the impact. Assuming that during the impact the tangen-
tial component of the reactive force is related to the normal com-
ponent by the Amontons–Coulomb law of sliding �dry� friction,
and ignoring the tangential compliance of the colliding bodies, we
can write

F

N
= − � sgn��� = − � sgn�� − �0� �6�

where � is the coefficient of kinetic friction. The substitution into
Eq. �5�, upon integration, gives

� = �− +
a + �b

J0
�, 0 � � � �0

� =
a − �b

J0
�� − �0�, �0 � � � �1 �7�

The normal impulse �0, determined from the condition ���0�=0,
is obtained from the first equation in Eq. �7�, as

�0 = −
J0�−

a + �b
�8�

In order that ��0 in the interval ��0 ,�1�, the coefficient of kinetic
friction must be bounded by ��a /b. If ��a /b, the pendulum
sticks to the ground after the impact, with no rebounding
velocity.1 By incorporating Eq. �8�, the angular velocity expres-
sion �7� can be rewritten in a bilinear form �Fig. 3�

� = �1 −
�

�0
��−, 0 � � � �0

� =
a − �b

a + �b
�1 −

�

�0
��−, �0 � � � �1 �9�

The corresponding slopes d� /d� in the compression and restitu-
tion phases of the impact are �a+�b� /J0 and �a−�b� /J0, respec-
tively. The two slopes are equal only in the absence of friction.

3 Coefficient of Normal Restitution
The total normal impulse �1 is still an unknown quantity in the

analysis, and cannot be determined without further assumptions.

1For small angle �=arctan�a /b� there is no rebound if friction is sufficiently large
��� tan ��; see Ref. �8�, p. 180.
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Fig. 1 A rigid pendulum, suspended from a frictionless pin O,
strikes a fixed horizontal surface with the incidence angular
velocity �−. The componential reactions at the contact point
with the coordinates „a ,−b… are N and F.
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Fig. 2 Schematic time variation of the normal and friction
components of the reactive force during the impact of duration
t1. The normal impulse up to an arbitrary time t is �=�0

t Ndt. The
friction component of the reactive force is related to the normal
component by the Amontons–Coulomb law of sliding friction
F=−�N sgn„t− t0…, where t0 is the time at which sliding changes
its direction, and � is the coefficient of kinetic friction.

�� ���

�

�

�

��

�

Fig. 3 Bilinear variation of the angular velocity �=�„�…, ac-
cording to Eq. „9…. The slopes in the compression and restitu-
tion phases of the impact are „a+�b… /J0 and „a−�b… /J0,
respectively.
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To proceed, we introduce the coefficient of normal restitution by
the Poisson definition as the ratio of the normal impulses corre-
sponding to restitution and compression phases of the impact, i.e.,

	 =
�1 − �0

�0
� 0, �1 = �1 + 	��0 �10�

Since the duration of the impact and the variation of the normal
force during the impact depend on friction, the ratio �1 /�0 and
thus the coefficient 	 also depend on friction.2 Assuming 	 to be
given, by using Eq. �10� it follows from Eq. �9� that the rebound-
ing angular velocity �+=���1� is related to the incidence angular
velocity by

�+ = − 	
a − �b

a + �b
�− �11�

With this, the angular velocity during the restitution phase of the
impact can be written, from the second equation in Eq. �9�, as

� =
1

	
�1 −

�

�0
��+, �0 � � � �1 �12�

Introducing the horizontal and vertical velocity components of the
contact point during the impact, u=b� and v=a�, Eq. �11� can be
rewritten as

v+ + �u+ = − 	�v− − �u−� �13�

which demonstrates that in the case of rigid pendulum striking a
fixed surface, the Poisson definition of the coefficient of normal
restitution differs from the Newton definition3

	̂ = −
v+

v− = −
�+

�− �14�

Evidently, by using Eq. �11�,

	̂ =
a − �b

a + �b
	 =

1 − �b/a
1 + �b/a

	 �15�

The two coefficients of normal restitution are therefore related to
the coefficient that depends on the impact configuration, as repre-
sented by the ratio b /a, and the coefficient of friction �. A physi-
cal interpretation of the parameter �b /a will be further discussed
in Sec. 6.1.

In order that there is a rebound, �− and �+ have to be of the
opposite sign, so that 	̂�0. Thus, the coefficient of friction and
the geometric parameters of the impact configuration �a ,b� have
to be such that a−�b�0. If ��a /b, the pendulum sticks to the
ground after the impact ��+=0�, which establishes the lower
bound on Newton’s coefficient of normal restitution, 	̂=0.

The kinetic energy dissipated by the frictional impact is


E = E− − E+ = 1
2J0���−�2 − ��+�2� = 1

2 �1 − 	̂2�J0��−�2 �16�

i.e., in view of Eq. �15�,


E =
1

2
J0��−�2	1 − 	2 �a − �b�2

�a + �b�2
 �17�

Since 
E must be non-negative �
E�0, the equality holding if
and only if 	=1 and �=0�, and since 	�0, Eq. �17� imposes an
upper bound on Poisson’s coefficient of normal restitution

	 � 	max, 	max =
a + �b

a − �b
�18�

for all cases in which there is a rebound of the pendulum after the
impact �a−�b�0�. Since 	max�1, the coefficient of normal res-
titution based on the Poisson definition can be greater than 1. This
is also clear from relationship �15� between Poisson’s and New-
ton’s definitions of the coefficient of normal restitution, because
	̂�1 in order that 
E= �1− 	̂2�E−�0, and thus 	max�1. Lower
values of the upper bounds on 	 and 	̂ will be derived in Sec. 5 of
this paper.

4 Energetic Coefficient of Restitution
Stronge �5� introduced an energetic coefficient of normal resti-

tution, whose square is equal to the negative ratio of the elastic
strain energy released during restitution and the internal energy of
deformation absorbed during compression phase of the impact. If
tangential compliance of colliding bodies is negligible, this coef-
ficient equals the negative ratio of the work done by the normal
component of the impulsive reaction during restitution and com-
pression phases of the impact,

�2 = −
Wr

n

Wc
n �19�

where

Wc
n =�

0

t0

Nvdt =�
0

�0

vd�, Wr
n =�

t0

t1

Nvdt =�
�0

�1

vd� �20�

The ratio −Wr
n /Wc

n accounts for irreversible deformation in the
contact region, it is presumingly independent of friction, and thus
represents an appealing coefficient to account for the normal res-
titution during a frictional impact.4 For the pendulum striking a
fixed surface, the vertical velocity component of the contact point
is v=a�, so that Eq. �20� becomes

Wc
n = a�

0

�0

�d�, Wr
n = a�

�0

�1

�d� �21�

By using angular velocity expression �7�, this gives

Wc
n = 1

2a�0�−, Wr
n = 1

2	a�0�+ �22�

When Eq. �22� is incorporated into Eq. �19�, there follows

�2 = − 	
�+

�− = 		̂ =
a − �b

a + �b
	2 =

a + �b

a − �b
	̂2 �23�

The expression �2=		̂, derived by a different route, was first
reported in Ref. �7�. Thus, for the rigid pendulum striking a fixed
surface, the energetic coefficient of normal restitution is a geomet-
ric mean of the Newton and Poisson coefficients of normal resti-
tution, i.e.,

� = �		̂ �24�

In the case of frictionless impact ��=0�, the three coefficients of
normal restitution are equal to each other �	= 	̂=��. For frictional
impact, the energetic coefficient is smaller than Poisson’s and
greater than Newton’s coefficient of normal restitution �	̂��
�	�. Indeed, from Eq. �23�,

	 = �a + �b

a − �b
�1/2

� = �1 +
2�b

a − �b
�1/2

�2The coefficient 	 also depends on the material properties and the incidence
angular velocity �−, affecting the nature of the deformation, but such dependence
cannot be determined within a rigid body mechanics �10�.

3The two definitions yield different expressions in many �but not all� frictional
impact problems in which there is a change in the slip direction during the impact
process. For example, Newton’s and Poisson’s definitions of the coefficient of normal
restitution, as well as the energetic definition, to be discussed in Sec. 4, for a spinning
disk striking a rough horizontal surface are all equivalent �	= 	̂=��.

4From experimental or numerical finite element method evaluations, it may be
anticipated that � depends on the material properties, the radius of pendulum’s local
curvature in the contact region, and the incidence angular velocity affecting the
extent of inelastic deformation in the region of contact.
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	̂ = �a − �b

a + �b
�1/2

� = �1 −
2�b

a − �b
�1/2

� �25�

For example, if �=0.1 and a /b=0.3, one has 	=�2� and 	̂
=� /�2.

Since �1 /�0=1+	, and in view of Eq. �23�, the relationship
between the impulse ratio �1 /�0 and the coefficient � is

�1

�0
= 1 +�a + �b

a − �b
�, a − �b � 0 �26�

In an advanced treatise on impact mechanics �8�, there is a mis-
take in the derivation presented in pages 178–180, where the im-
pulse ratio and the energy coefficient of restitution are listed as5

pf

pc
= 1 + e��r1 + �r3

r1 − �r3
, e�

2 =
r1 − �r3

r1 + �r3

pf
2 − pc

2

pc
2

For example, if �=0, the first of these expressions yields 1+e�

= pf / pc and the second 1+e�
2= pf

2 / pc
2, contradicting each other. The

expression for e�
2 in Ref. �8� is incorrect because of the mistake in

the expression for the vertical velocity component used therein to
evaluate the restitution work.

5 Bounds on the Coefficients of Restitution
An obvious upper bound on Newton’s coefficient of normal

restitution, appearing in the relationship �+=−	̂�−, is

	̂ � 1 �27�

because the magnitude of �+ cannot be greater than the magnitude
of �− �otherwise there would be an energy gain by the impact
process E+−E−�0�. In view of relationship �15�, the correspond-
ing upper bound on the Poisson coefficient of normal restitution is

	 �
a + �b

a − �b
�28�

Lower upper bounds on 	 and 	̂ can be deduced by first imposing
the upper bound on the energetic coefficient of normal restitution,

� � 1 �29�
which must hold because the restitution phase of the impact can-
not deliver more energy than what was stored during the compres-
sion phase, �2=−Wr

n /Wc
n�1. The limiting case �=1 corresponds

to purely elastic compression �dissipation of energy being associ-
ated with the frictional sliding only�. Consequently, by recalling
from Eq. �25� the relationships between the three coefficients of
normal restitution,6 inequality �29� yields the stronger �lower� up-
per bounds on the Poisson and Newton coefficients of normal
restitution. For a−�b�0, these are

	 � �a + �b

a − �b
�1/2

= �1 +
2�b

a − �b
�1/2

	̂ � �a − �b

a + �b
�1/2

= �1 −
2�b

a + �b
�1/2

�30�

In the presence of friction, the above upper bound on 	 is greater
than 1, and the upper bound on 	̂ is smaller than 1, the two being
the reciprocals of each other.

The corresponding upper bound on the normal impulse �1= �1
+	��0 is

�1 � 	1 + �1 +
2�b

a − �b
�1/2
�0, a − �b � 0 �31�

which shows that, for frictional impact, the upper bound on �1 is
greater than 2�0. For frictionless impact, the upper bound on �1 is
equal to 2�0, and is reached in the limit of perfectly elastic impact.

6 Energy Dissipated by Friction
The works done by the tangential component of impulse during

the restitution and compression phases are

Wc
t =�

0

t0

Fudt =�
0

�0 F

N
ud�

Wr
t =�

t0

t1

Fudt =�
�0

�1 F

N
ud� �32�

Since F /N=−� sgn��−�0�, and by using the expression for the
horizontal velocity component of the contact point u=b�, Eq.
�32� becomes

Wc
t = �b�

0

�0

�d�, Wr
t = − �b�

�0

�1

�d� �33�

i.e.,

Wc
t = 1

2�b�0�−, Wr
t = − 1

2�b	�0�+ �34�

The total work dissipated by friction during the impact is

Wt = Wc
t + Wr

t = 1
2�b�0��− − 	�+� �35�

This can be compared with the total work done by the normal
component of impulse, which is, from Eq. �22�,

Wn = Wc
n + Wr

n = 1
2a�0��− + 	�+� �36�

The dissipated energy by irreversible deformation due to normal
force is

− Wn = − 1
2a�0�−�1 − 		̂� = 1

2J0��−�2 a

a + �b
�1 − �2� �37�

which is positive if ��1. See also a related discussion in Ref.
�11�.

6.1 Work Ratios. The total works done during the compres-
sion and restitution phases of the impact are

Wc = Wc
n + Wc

t = 1
2 �a + �b��0�− = − 1

2J0��−�2 �38�

Wr = Wr
n + Wr

t = 1
2 �a − �b�	�0�+ = 1

2J0��+�2 �39�

These expressions can also be obtained directly by applying the
energy-work principle to the compression and restitution phases
of the impact separately �E−+Wc=0 and 0+Wr=E+�. The total
work done by both the normal and tangential impulsive reactions
is W=Wc+Wr=Wn+Wt=E+−E−.

From the derived work expressions, the following work ratios
are observed:

−
Wr

n

Wc
n =

Wr
t

Wc
t = − 	

�+

�− = 		̂ = �2, −
Wr

Wc
= ��+

�−�2

= 	̂2 �40�

Thus, for the pendulum striking a fixed surface, the Newton coef-
ficient of normal restitution, defined by the kinematic relation 	̂
=−�+ /�−, can also be given an energy interpretation, via 	̂2=
−Wr /Wc=E+ /E−. Furthermore, the energetic coefficient of normal
restitution is equal to either the normal work ratio �−Wr

n /Wc
n�, or

the frictional work ratio �Wr
t /Wc

t �, so that in the considered prob-
lem the frictional dissipation during the restitution phase is always

5The notations used in Ref. �8� are pc=�0, pf =�1, e�=�, r1=a, and r3=b.
6If � is assumed to be given, then the kinematic and kinetic coefficients of normal

restitution depend on � and the geometric parameter �b /a, accounting for friction
and the pendulum impact configuration, represented by the ratio b /a. Clearly, the
higher the value of � �less dissipation by the deformation�, the higher the coefficients
	 and 	̂, and thus the higher the rebound ��+�.
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smaller than during the compression phase �Wr
t �Wc

t for ��1�.
The ratio of the works associated with the tangential and nor-

mal impulses is

Wt

Wn =
�b

a

1 + �2

1 − �2 �41�

while

Wc
t

Wc
n = −

Wr
t

Wr
n =

�b

a
�42�

Thus, the parameter �b /a, appearing in the relationships between
	, 	̂, and �, can be given a physical interpretation as energy ratio
�42�, in addition to being equal to the product of the force ratio
�F� /N and the velocity ratio u /v.

If, upon the impact, the pendulum sticks to the ground, there is
no restitution �Wr

t =Wr
n=0�, and Wc

n=Wc
t =�0a�− /2=−E− /2. In

this case, all three coefficients of normal restitution are equal to
zero, which represents their lower bound, and �1=�0=
−J0�− / �2a�.

7 Impact With Elastic Compression

If �=1 in Eq. �40�, then Wn=0 and Wr
n=−Wc

n, which corre-
sponds to elastic deformation during the impact: The elastic en-
ergy stored during the compression phase is fully recovered and
used for the liftoff of the pendulum during the restitution phase.7

In this case, from Eq. �25�, the Newton and Poisson coefficients of
restitution are the reciprocals of each other �	̂=1 /	�, and equal to

	 = �a + �b

a − �b
�1/2

= �1 +
2�b

a − �b
�1/2

� 1

	̂ = �a − �b

a + �b
�1/2

= �1 −
2�b

a + �b
�1/2

� 1 �43�

Thus, for the pendulum striking a rough surface elastically, New-
ton’s coefficient of normal restitution is smaller than 1, and Pois-
son’s coefficient is greater than 1. The plots of 	̂ versus the angle
�=arctan�a /b�, for various values of �, are shown in Fig. 4. The
plots are for the elastic impact. For each �, there is no rebound if
the angle � is smaller than the angle corresponding to 	̂=0. If the

frictional impact is inelastic, the plots should be scaled by the
corresponding value of ��1.

The total normal impulse of the elastic impact is

�1 = 	1 + �1 +
2�b

a − �b
�1/2
�0, a − �b � 0 �44�

which is greater than 2�0 �unless �=0, in which case �1=2�0�.
The average angular velocity during the elastic impact is zero,

and

�+ = − 	̂�− = −
�−

	
= − �a − �b

a + �b
�1/2

�− �45�

The total work done by the impulsive reactions is equal to the
dissipated work by friction, which is, from Eq. �35�,

W = Wt = 1
2�b�0�1 + 	2���−�2 = − J0

�b

a + �b
��−�2 �46�

8 Tangential Impact Coefficient
The tangential impulse at an arbitrary stage of the impact pro-

cess is

f��� =�
0

t

Fdt =�
0

�
F

N
d� �47�

Since F=−�N sgn��−�0�, one readily finds that

f��� = 
 �� , � � �0

��2�0 − �� , � � �0
� �48�

Corresponding Routh’s impact diagram is shown in Fig. 5.
Brach �6� defined the tangential impact coefficient as the ratio

of the tangential and normal components of the impulse,

�̂ =

�
0

t1

Fdt

�
0

t1

Ndt

=
f1

�1
�49�

For the rigid pendulum striking a fixed surface, this gives

�̂ =
��2�0 − �1�

�1
�50�

Since �1= �1+	��0, and thus f1=��1−	��0, the substitution into
Eq. �50� yields

�̂ =
��1 − 	�

1 + 	
�51�

as in Ref. �4�. The ratio of the tangential and normal components
of the impulse is thus not equal to � �as in Whittaker’s theory of
frictional impact �2��, but to �̂��, because there was a change in
the slip direction at the transition between the compression and
restitution phases of the impact �4,7,8�. If there is no rebound
��+=0�, then 	=0 and �̂=� �as expected, because, without re-

7The tangential stiffnesses of the pendulum and the surface are assumed to be
infinite, so that the elastic energy is entirely due to deformation in the normal
direction.
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Fig. 4 „a… Two impact configurations of the rigid pendulum
against a fixed surface, corresponding to two different values
of the angle �. „b… The variation of the Newton coefficient of
normal restitution �̂ with � „in radians…, in the case of an elastic
impact „�=1…, with different coefficients of friction �. The far
left curve is for �=0.1, and the subsequent curves toward the
right are for �=1/3,0.5,2/3,1. As �\� /2, the coefficient �̂=
−�+ /�−\1 for all � „passive friction for vertical impact….
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Fig. 5 „a… The force ratio F /N versus the normal impulse �. „b…
Routh’s impact diagram showing the variation of the tangential
impulse f versus the normal impulse �.
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bound, there is no change in the slip direction�. Note also that in
Eq. �51�, �̂�0 if 	�1. If �=0, then �̂=0, as well.

The energy dissipated by the impact 
E=J0���−�2− ��+�2� /2
can be cast in the form of the generalized Thomson–Tait formula
�e.g., Refs. �7� and �8��


E = − 1
2 f1�u− + u+� − 1

2�1�v− + v+� �52�

Indeed, from Eq. �1�, one can write a�1+bf1=−J0��−−�+�, so
that


E = 1
2J0��− − �+���− + �+� = − 1

2 �a�1 + bf1���− + �+� �53�

Since u=b� and v=a�, Eq. �53� takes Thomson–Tait form �52�.

8.1 Bounds on the Tangential Impact Coefficient. Since
Poisson’s coefficient of normal restitution is bounded by

0 � 	 � �a + �b

a − �b
�1/2

�54�

it readily follows from Eq. �51� that the bounds on �̂ are

−
a

b
�1 − �1 − ��b/a�2� � �̂ � � �55�

The upper bound �̂=� is reached if the pendulum sticks to the
ground upon the impact �	=0�, while the lower bound is reached
in the case of elastic frictional impact ��=1�, since then 	 is equal
to its upper bound. Note that the lower bound on �̂ in Eq. �55� is
negative, but greater than −a /b �which itself must be greater than
−�, for the rebound to take place�. For small ratio �b /a, the lower
bound on �̂ is approximately equal to −� /2. The negative values
of �̂ mean that in these cases there is a longer lasting backward
than forward slip during the impact, i.e., the duration of the resti-
tution phase is longer �on the �-scale� than that of the compression
phase ��1−�0��0, and thus 	�1�. For example, in the case of an
elastic impact ��=1� with �=0.1 and a /b=0.3, so that 	=�2, one
finds that �1−�0=�2�0 and �̂�−0.017.

9 Nearly Vertical Impact
The effect of friction on the impact response diminishes with

the decrease in the ratio b /a. For a given coefficient of friction �,
and sufficiently small ratio b /a �nearly vertical impact, Fig. 6�,
from Eq. �23� there follows8

	 = �1 + �b/a��, 	̂ = �1 − �b/a��

	 = �1 + 2�b/a�	̂, 	̂ = �1 − 2�b/a�	 �56�

to first order terms in �b /a �neglecting the quadratic term
��b /a�2�1�. In this case, and to this order of accuracy, the
bounds on the kinematic and kinetic coefficients of normal resti-
tution are

0 � 	̂ � 1 − �b/a, 0 � 	 � 1 + �b/a �57�
The corresponding bounds on the total normal impulse are

�0 � �1 � �2 + �b/a��0 �58�

The tangential impact coefficient can be expressed in terms of �
as

�̂ = �	1 − �

1 + �
− 2�

b

a

�

�1 + ��2
 �59�

to first order terms in �b /a, and is bounded by

−
1

2
�2b

a
� �̂ � � �60�

For example, if �=0.4 and a=4b, so that �b /a=0.1, the bounds
on the impact coefficients are 0�	�1.1, 0�	̂�0.9, and −0.02
��̂�0.4.

10 Conclusion
The frictional impact of rigid pendulum against a fixed surface

was studied by using kinematic, kinetic, and energetic definitions
of the coefficient of normal restitution, which specify the rebound-
ing angular velocity and the total normal impulse during the im-
pact. The tangential stiffnesses of the pendulum and the surface
are assumed to be infinite, so that the elastic energy is entirely due
to deformation in the normal direction. It is shown that the ener-
getic coefficient of normal restitution is a geometric mean of the
kinematic �Newton’s� and kinetic �Poisson’s� coefficients of nor-
mal restitution. In the case of frictionless impact, the three coef-
ficients are equal to each other. For frictional impact, the energetic
coefficient is smaller than Poisson’s and greater than Newton’s
coefficient of normal restitution. The upper bounds on all three
coefficients are established, demonstrating that, for the frictional
impact, the upper bound on the Newton coefficient is smaller than
1, while the upper bound on the Poisson coefficient is greater than
1. The upper bound on the energetic coefficient of normal restitu-
tion is equal to 1, because the restitution phase of the impact
cannot deliver more energy than what is stored during the com-
pression phase. The frictional dissipation during the restitution
phase is always smaller than during the compression phase. For
the pendulum striking a rough surface elastically, without dissipa-
tion due to deformation �dissipation of energy being associated
with the frictional sliding only�, the Newton and Poisson coeffi-
cients are the reciprocals of each other. If, upon the impact, the
pendulum sticks to the ground, there is no restitution phase of the
impact, and all three coefficients of normal restitution are equal to
zero, which represents their lower bound. The bounds on the tan-
gential impact coefficient, defined by the ratio of the frictional and
normal impulses �which is not equal to �, because of the slip
reversal at the transition from the compression to restitution
phases of the impact�, are also derived. Its lower bound is nega-
tive, while its upper bound is equal to the kinetic coefficient of
friction. The simplified bounds on the impact coefficients are de-
duced in the case of a nearly vertical impact, for which friction
exerts the least effect on the impact response. The obtained results
may be of interest for the analysis of planar impacts of linkages
and related problems in the mechanics of frictional impact
�12–14�.
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8Thus, � is here the arithmetic mean of 	 and 	̂, i.e., �= �	+ 	̂� /2, which is in
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Fig. 6 A nearly vertical impact „b™a… of a rigid pendulum
against a rough horizontal surface. The componential reactions
at the contact point are N and F.
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The Nonlinear Output Frequency
Response Functions of
One-Dimensional Chain Type
Structures
It is well-known that if one or a few components in a structure are of nonlinear proper-
ties, the whole structure will behave nonlinearly, and the nonlinear component is often
the component where a fault or an abnormal condition occurs. Therefore it is of great
significance to detect the position of nonlinear components in structures. Nonlinear out-
put frequency response functions (NOFRFs) are a new concept proposed by the authors
for the analysis of nonlinear systems in the frequency domain. The present study is
concerned with investigating the NOFRFs of nonlinear one-dimensional chain type sys-
tems, which have been widely used to model many real life structures. A series of impor-
tant properties of the NOFRFs of locally nonlinear one-dimensional chain type structures
are revealed. These properties clearly describe the relationships between the NOFRFs of
different masses in a one-dimensional chain type system, and allow effective methods to
be developed for detecting the position of a nonlinear component in the system. The
results are an extension of the authors’ previous research studies to a more general and
practical case, and have considerable significance in fault diagnosis and location in
engineering systems and structures. �DOI: 10.1115/1.3173604�

Keywords: nonlinear vibration, frequency response functions, Volterra series, structure
vibration

1 Introduction
There are many real life systems, which can be modeled as

either finite or infinite, one-dimensional chain or multidimensional
grid type structures. These systems range from simple structures,
such as periodically supported beams �1–6� and plates �5,6�, to
building blocks �7�. The analysis of free and forced vibrations and
the mode analysis for linear chain and grid structures are of par-
ticular interests �1–6�. Mead �8� provided an excellent review
about the research studies on periodic structures, which are a spe-
cific class of one-dimensional chain type structures.

In engineering practice, there are considerable one-dimensional
chain type structures that would behave nonlinearly due to various
factors, and therefore extensive efforts have been made to the
study of nonlinear one-dimensional type chain type structures
�9–13�. Moreover, it has been revealed that some mechanical
structures can behave nonlinearly just because one or a few com-
ponents of the structures have nonlinear properties, and the non-
linear component is often the component where a fault or an ab-
normal condition occurs. One well-known example is the beam
structures �14� with breathing cracks where the global nonlinear
behaviors are caused by a few cracked elements. Therefore it is of
great practical significance to effectively detect the position of
nonlinear components in mechanical structures, such as beams,
for the purpose of fault diagnosis. The detection of damage in
large periodic structures has been studied by Zhu and Wu �15�. In
their studies, a periodic structure with damage is considered to be
linear, and the location and magnitude of damage in large mono-
coupled periodic systems have been estimated using the measured
changes in natural frequencies. Based on a one-dimensional chain
type structure model, Fassois and Sakellariou �7,16� used a sto-

chastic output error vibration-based methodology to detect the
damage in structures where the damage elements were modeled as
a component of cubic stiffness. In addition, many methods were
also proposed for damage detections by observing the appearance
of superharmonics and the subresonances �17,18� or using bispec-
trum analysis �19,20�. However, there are few references, which
are especially devoted to the damage detections by detecting and
locating nonlinear components in structures.

Motivated by the practical need of detecting and locating non-
linear components in locally nonlinear one-dimensional chain
type structures, in a previous study �21� the authors have applied
a novel concept known as nonlinear output frequency response
functions �NOFRFs� �22,23�, which is derived from the Volterra
series theory �20� of nonlinear systems, to analyze the one-
dimensional chain type structures with one nonlinear component.
The study revealed a series of important properties of the NOF-
RFs for this class of structural systems. The results allow effective
methods to be developed for the detection and location of nonlin-
earity in the structural systems and, therefore, have practical sig-
nificance in fault diagnosis and location for engineering systems
and structures. The present study is concerned with extending the
analysis in Ref. �21� to a more general and practical case where
the considered one-dimensional chain type structures are sub-
jected to a force excitation added at any point of interest rather
than only at the free end, as considered in the initial study in Ref.
�21�. The new result is not only of theoretical importance but also
has significant engineering implication, since it allows the inspect-
ing signal needed for detection of the system nonlinearity to be
applied at any point of an inspected structural system for the pur-
pose of its fault diagnosis.

The paper is organized as follows. Section 2 describes the the-
oretical background of the Volterra series and the NOFRF con-
cept. The NOFRF based analysis of locally nonlinear one-
dimensional chain type structures, where the excitation force
applied to the considered system is allowed to be at any point of
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interest is presented in Sec. 3. The analysis results reveal the
properties of the NOFRFs of one-dimensional chain type struc-
tures in a more general and practical situation. In Sec. 4, these
properties are verified by numerical studies, and the implications
of the new results to structural system fault diagnosis are dis-
cussed. Finally conclusions are given in Sec. 5.

2 Nonlinear Output Frequency Response Functions
The definition of the NOFRFs is based on the Volterra series

theory of nonlinear systems. The Volterra series extends the well-
known convolution integral description for linear systems to a
series of multidimensional convolution integrals, which can be
used to represent a wide class of nonlinear systems �24,25�.

Consider the class of nonlinear systems, which are stable at
zero equilibrium and which can be described in the neighborhood
of the equilibrium by the Volterra series

x�t� = �
z=1

N �
−�

�

. . .�
−�

�

hz��1, . . . ,�z��
i=1

z

u�t − �i�d�i �1�

where x�t� and u�t� are the output and input of the system,
hz��1 , . . . ,�z� is the nth order Volterra kernel, and N denotes the
maximum order of the system nonlinearity. Lang and Billings �26�
derived an expression for the output frequency response of this
class of nonlinear systems to a general input. The result is

X�j�� = �
z=1

N

Xz�j�� for ∀ �

�2�

Xz�j�� =
1/�z

�2��z−1 �
�1+,. . .,+�z=�

Hz�j�1, . . . , j�z��
i=1

z

U�j�i�d�z�

In Eq. �2�, X�j�� is the spectrum of the system output, Xz�j��
represents the zth order output frequency response of the system

Hz�j�1, . . . , j�z�

=�
−�

�

. . .�
−�

�

hz��1, . . . ,�z�e−j��1�1+,. . .,+�z�z�d�1 . . . d�z �3�

is called the generalized frequency response function �GFRF� of
the system �27� and

�
�1+,. . .,+�z=�

Hz�j�1, . . . , j�z��
i=1

z

U�j�i�d�z�

denotes the integration of Hz�j�1 , . . . , j�z��i=1
z U�j�i� over the

z-dimensional hyperplane �1+ ¯+�z=�, with �z� representing
the whole integral field satisfying the constraint �1+ ¯+�z=�
and d�z� denoting an infinitely small element within this integral
field.

When z=1, the GFRF, as defined in Eq. �3�, becomes

H1�j�1� =�
−�

�

h1��1�e−�1�1jd�1

which is the well-known frequency response function �FRF� con-
cept for linear systems. Therefore, the GFRFs extend the linear
FRF concept to the nonlinear case, and Eq. �2� is an extension of
the well-known linear relationship between the system input and
output spectra X�j��=H�j��U�j��, where H�j��=H1�j��, to the
nonlinear situation.

To demonstrate how the output spectrum of a nonlinear system
can be expressed by Eq. �2�, consider, as an example, a nonlinear
oscillator described by the differential equation

mẍ + cẋ + kx + r2x2 + r3x3 = u�t� �4�

where m, c, and k are the linear characteristic parameters, and r2
and r3 are the nonlinear characteristic parameters.

Using the algorithm in Refs. �28–30�, the GFRFs of system �4�
can be determined as follows:

H1�j�� =
1

− m�2 + jc� + k
�5�

H2�j�1, j�2� = − r2H1�j�1�H1�j�2�H1�j�1 + j�2� �6�

H3�j�1, j�2, j�3� = − 	�2/3�r2�H1�j�1�H2�j�2, j�3�

+ H1�j�2�H2�j�1, j�3� + H1�j�3�H2�j�1, j�2��

+ r3H1�j�1�H1�j�2�H1�j�3�


� H1�j�1 + j�2 + j�3� �7�
If the maximum order of the system nonlinearity can be taken as
N=3, then, given the spectrum of the system input U�j��, the
output spectrum of system �4� can theoretically be determined as

X�j�� = � H1�j��U�j�� +
1/�2

�2���
�1+�2=�

H2�j�1, j�2�U�j�1�U�j�2�d�2�

+
1/�3

�2��2�
�1+�2+�3=�

H3�j�1, j�2, j�3�U�j�1�U�j�2�U�j�3�d�3�� �8�

with H1�j��, H2�j�1 , j�2�, and H3�j�1 , j�2 , j�3� being deter-
mined from Eqs. �5�–�7�.

The NOFRFs are a new concept recently introduced by Lang
and Billings �22�. The concept is defined as

Gz�j�� =

�
�1+,. . .,+�z=�

Hz�j�1, . . . , j�z��
i=1

z

U�j�i�d�z�

�
�1+,. . .,+�z=�

�
i=1

z

U�j�i�d�z�

�9�

under the condition

Uz�j�� =
1/�z

�2��z−1�
�1+,. . .,+�z=�

�
i=1

z

U�j�i�d�z� � 0 �10�

and can be considered to be an alternative extension of the FRF
concept for linear systems to the nonlinear case. The most impor-
tant advantage of the NOFRF concept over the GRFRs is the
one-dimensional nature. This allows the analysis of the output
frequency response of nonlinear systems to be conducted in a way
similar to the analysis of the output frequency response of linear
systems. This is because by introducing the NOFRF concept, Eq.
�2� can be written as
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X�j�� = �
z=1

N

Xz�j�� = �
z=1

N

Gz�j��Uz�j�� �11�

where Uz�j�� is defined as Eq. �10�. Equation �11� is similar to the
description of the output frequency response for linear systems.
Figures 1 and 2 illustrate how the NOFRF concept can be used to
describe the output spectra of linear and nonlinear systems, re-
spectively, which clearly shows the advantage of the NOFRFs’
one-dimensional nature in describing the system output frequency
responses.

To demonstrate the NOFRF based description for the output
spectrum of nonlinear systems, consider system �4� again as an
example and assume that the excitation force is a sinusoidal sig-
nal, e.g., u�t�=A cos��Ft�. In this case, it can be shown that con-
dition �10� implies that the system zth order NOFRF Gz�j�� is
valid over the system zth order output frequency range given by

�z = 	�− z + 2k��F,k = 0,1, ¯ ,z
 �12�

and when ���z, Uz�j�� can be given by

Uz�j�− z + 2k��F� =
1

2z

z!

k ! �z − k�!

A
z �13�

Therefore, G1�j��, G2�j��, and G3�j�� are valid over the fre-
quency ranges 	−�F ,�F
, 	−2�F ,0 ,2�F
, and 	−3�F ,�F ,�F ,
3�F
, respectively, and the NOFRFs of system �4� up to the third
order at their corresponding valid frequency ranges can be deter-
mined from Eqs. �9�, �5�–�7�, and �13� as

G1�j�F� =
1

− m�F
2 + jc�F + k

�14�

G2�j0� = H2�− j�F, j�F� = −
r2

k
H1�− j�F�H1�j�F� �15�

G2�j2�F� = H2�j�F, j�F� = − r2H1
2�j�F�H1�j2�F� �16�

G3�j�F� = H3�− j�F, j�F, j�F�

= 
H1�j�F�
2H1
2�j�F��2r2

2

3
�H1�j2�F� +

2

k
� − r3�

�17�

G3�j3�F� = H3�j�F, j�F, j�F�

= H1
3�j�F�H1�j3�F��2r2

2H1�j2�F� − r3� �18�

Consequently, when N=3, the output frequency response of sys-
tem �4� over the total output frequency range �=�1��2��3
= 	�3�F , �2�F , ��F ,0
 can be described using Eq. �11� as

X�j�F� = U1�j�F�G1�j�F� + U3�j�F�G3�j�F� �19�

X�j0� = U2�j0�G2�j0� �20�

X�j2�F� = U2�j2�F�G2�j2�F� �21�

X�j3�F� = U3�j3�F�G3�j3�F� �22�

where U1�j�F�, U2�j0�, U2�j2�F�, U3�j3�F�, and U3�j�F� are
obtained from Eq. �13�.

For nonlinear systems, the dynamical properties are determined
in the frequency domain by the GFRFs Hz�j�1 , . . . , j�z� �z
=1, . . . ,N�. It can be observed from Eq. �9� that the NOFRF
Gz�j�� is a weighted sum of the GFRF Hz�j�1 , . . . , j�z� over the
z-dimensional hyperplane �1+ ¯+�z=� with the weights de-
pending on the system input. Therefore, when the system input is
fixed, the NOFRF Gz�j�� can be regarded as a one-dimensional
description of the system properties represented by the GFRF
Hz�j�1 , . . . , j�z� and can be used to simplify the complicated
GFRF based analysis of nonlinear systems in the frequency do-
main. The objective of the present study is to apply the NOFRF
concept to analyze nonlinear one-dimensional chain type struc-
tures, in order to reveal the important properties of the systems.
This will facilitate the detection of the nonlinear component in the
system, which has significant implications for the fault diagnosis
of practical engineering structural systems.

3 Analysis of Nonlinear One-Dimensional Chain Type
Structures Using the NOFRFs

3.1 The GFRFs of Locally Nonlinear One-Dimensional
Chain Type Structures. Consider the one-dimensional nonlinear
chain type structures, as shown in Fig. 3, where the Lth compo-
nent is nonlinear and a force excitation is applied on the Jth mass.
This model has been used in Refs. �7,12–15� for nonlinear struc-
tural analysis and structural damage detection and assessment.

Assume that the restoring forces SLS�	� and SLD�	̇� of the Lth
spring and damper are the polynomial functions of the deforma-

tion 	=xL−1−xL and 	̇= ẋL−1− ẋL respectively, e.g.,

SLS�	� = �
i=1

P

ri	
i, SLD�	̇� = �

i=1

P

wi	̇
i �23�

where P is the degree of the polynomials and kL=r1 and cL=w1.
Without loss of generality, further assume L�1,n. Denote

Fnon = �
i=2

P

wi�ẋL−1 − ẋL�i + �
i=2

P

ri�xL−1 − xL�i �24�

�25�

Then the motion of the nonlinear oscillator in Fig. 3 can be de-
scribed in a matrix form as

Mẍ + Cẋ + Kx = − FN + F�t� �26�

where

Fig. 1 The NOFRF based representation for the output fre-
quency response of linear systems

Fig. 2 The NOFRF based representation for the output fre-
quency response of nonlinear systems

Fig. 3 A locally nonlinear multidegree freedom oscillator
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M = �
m1 0 ¯ 0

0 m2 ¯ 0

] ] � ]

0 0 ¯ mn

�
C = �

c1 + c2 − c2 0 ¯ 0

− c2 c2 + c3 − c3 � ]

0 � � � 0

] � − cn−1 cn−1 + cn − cn

0 ¯ 0 − cn cn

�
K = �

k1 + k2 − k2 0 ¯ 0

− k2 k2 + k3 − k3 � ]

0 � � � 0

] � − kn−1 kn−1 + kn − kn

0 ¯ 0 − kn kn

�
are the system mass, damping, and stiffness matrices, respectively.
x= �x1 , ¯ ,xn�� is the displacement vector, and

�27�
is the external force vector.

The system described by Eq. �26� is a typical locally nonlinear
one-dimensional chain type structure. The Lth nonlinear compo-
nent can make the whole system behave nonlinearly. The Volterra
series can be used to describe the relationships between the dis-
placements xi�t� �i=1, . . . ,n� and the input force u�t� of system
�26� as

xi�t� = �
j=1

N �
−�

�

¯�
−�

�

h�i,j���1, . . . ,� j��
Z=1

j

u�t − �Z�d�Z �28�

where h�i,j���1 , . . . ,� j�, �i=1, . . . ,n, j=1, . . . ,N�, represents the jth
order Volterra kernel for the relationship between u�t� and the
displacement of mass mi.

The Fourier transform of h�i,j���1 , . . . ,� j� is its corresponding
GFRF, which will be denoted by H�i,j��j�1 , . . . , j� j� �i=1, ¯ ,n,
j=1, ¯ ,N� as follows.

It can be deduced �see Appendix A� that the n sets of GFRFs of
system �26�

H�i,1��j�1�, ¯ ,H�i,N��j�1, ¯ , j�N� �i = 1,2, . . . ,n�

satisfy the following relationships:

H�i,1��j��

H�i+1,1��j��
=

Q�i,J��j��

Q�i+1,J��j��
= 
1

i,i+1��� �i = 1, . . . ,n − 1�

�29�

and

H�i,N̄��j�1, . . . , j�N̄�

H�i+1,N̄��j�1, . . . , j�N̄�

=
Qi,L−1�j��1 + ¯ + �N̄�� − Qi,L�j��1 + ¯ + �N̄��

Qi+1,L−1�j��1 + ¯ + �N̄�� − Qi+1,L�j��1 + ¯ + �N̄��

= 

N̄

i,i+1��1 + ¯ + �N̄� �N̄ � 1;i = 1, . . . ,n − 1� �30�

where

�Q�1,1��j�� ¯ Q�1,n��j��

] � ]

Q�n,1��j�� ¯ Q�n,n��j�� � = �− M�2 + jC� + K�−1 �31�

Equations �29� and �30� give a comprehensive description for the
relationships between the GFRFs of any two consecutive masses
for the nonlinear one-dimensional chain type system �25�.

3.2 The NOFRFs of Locally Nonlinear One-Dimensional
Chain Type Structures. According to the definition of the

NOFRFs in Eq. �9�, the N̄th order NOFRF of the ith mass of
system �26� can be expressed as

G�i,N̄��j�� =

�
�1+,. . .,+�N̄=�

H�i,N̄��j�1, . . . , j�N̄��
q=1

N̄

U�j�q�d�N̄�

�
�1+,. . .,+�N̄=�

�
q=1

N̄

U�j�q�d�N̄�

�1 � N̄ � N,1 � i � n� �32�

where U�j�� is the Fourier transform of the input force u�t�.
Denote

GN̄�j�� = �G�1,N̄��j�� ¯ G�n,N̄��j���T �1 � N̄ � N� �33�

From Eqs. �A20� and �32� it can be deduced that

Θ�j��GN̄�j�� = �N̄�j�� �2 � N̄ � N� �34�

where

�35�and

�
N̄

L−1,L�j�� =

�
�1+,. . .,+�N̄=�

�
N̄

L−1,L�j�1, . . . , j�N̄��
q=1

N̄

U�j�q�d�N̄�

�
�1+,. . .,+�N̄=�

�
q=1

N̄

U�j�q�d�N̄�

�36�

Moreover, according to Eq. �30�, for any N̄
2, Eq. �32� can be
rewritten as

G�i,N̄��j�� =

�
�1+,. . .,+�N̄=�



N̄

i,i+1��1 + ¯ + �N̄�H�i+1,N̄��j�1, . . . , j�N̄��
q=1

N̄

U�j�q�d�N̄�

�
�1+,. . .,+�N̄=�

�
q=1

N̄

U�j�q�d�N̄�

= 

N̄

i,i+1���G�i+1,N̄��j�� �2 � N̄ � N,1 � i � n − 1�

�37�
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Therefore, for two consecutive masses, the NOFRFs satisfy

G�i,N̄��j��

G�i+1,N̄��j��
=

Qi,L−1�j�� − Qi,L�j��
Qi+1,L−1�j�� − Qi+1,L�j��

= 

N̄

i,i+1����2 � N̄ � N,1 � i � n − 1� �38�

Similarly, when N̄=1, according to Eqs. �A3� and �32�, the first
order NOFRFs of the system satisfy

�39�

It is known from Eq. �29� that

G�i,1��j�� = 
1
i,i+1���G�i+1,1��j�� �1 � i � n − 1� �40�

Therefore

G�i,1��j��

G�i+1,1��j��
=

Q�i,J��j��

Q�i+1,J��j��
= 
1

i,i+1��� �1 � i � n − 1� �41�

Equations �38� and �41� give a comprehensive description for the
relationships between the NOFRFs of two consecutive masses of
the nonlinear one-dimensional chain type system �26�.

From Eqs. �38� and �40�, it is known that the ratio of the N̄th

order NOFRFs of two consecutive mass, 

N̄

i,i+1��� �1� N̄�N�, is
only dependent on the linear characteristic parameters of the one-
dimensional chain type system. This implies that the propagation
of the system nonlinear effect induced by the nonlinear compo-
nent in the system is totally governed by the system linear char-
acteristic parameters. This is an important property revealed in the
present study. Based on this property, significant relationships be-
tween the NOFRFs of two consecutive masses can be obtained.
The results are described in the following proposition.

PROPOSITION 1. For two masses, which are located on the left of
the nonlinear spring or on the right of the input force, there exists
the following relationship between the NOFRFs of the two
masses:

G�i,1��j��

G�i+1,1��j��
= ¯ =

G�i,N��j��

G�i+1,N��j��
�1 � i � L − 2,J � i � n�

�42�
and for two masses located between the nonlinear spring and the
input force, the following relationships hold:

G�i,1��j��

G�i+1,1��j��
�

G�i,2��j��

G�i+1,2��j��
= ¯ =

G�i,N��j��

G�i+1,N��j��

�L − 1 � i � J − 1� �43�
The proof of the proposition is given in Appendix B.

From Proposition 1, a series of properties of the nonlinear one-
dimensional chain type system �26� can be derived. These prop-
erties are summarized as follows.

�i� For two masses, which are on the left of the nonlinear
spring or on the right of the input force, there exists the
following relationship between the spectra of the displace-
ments of the masses:

Xi�j�� = 
1
i,i+1�j��Xi+1�j�� �1 � i � L − 2,J � i � n�

�44�
�ii� For any two masses, which are either on the left of the

nonlinear spring or on the right of the input force, the
following relationships hold:

G�i,1��j��

G�i+k,1��j��
= ¯ =

G�i,N��j��

G�i+k,N��j��
= 
1

i,i+k���

�1 � i � L − 2 and i + k � L − 1 or J � i � n

and J � i + k � n� �45�
where


1
i,i+k��� = �

d=0

k−1


1
i+d,i+d+1��� �46�

�iii� For any two masses, which are either on the left of the
nonlinear spring or on the right of the input force, the
following relationships hold:

Xi�j�� = 
1
i,i+k���Xi+k�j��

�1 � i � L − 2 and i + k � L − 1 or J � i � n and

J � i + k � n� �47�
�iv� For any two masses located between the nonlinear spring

and the input force, the following relationship holds:

G�i,1��j��

G�i+k,1��j��
�

G�i,2��j��

G�i+k,2��j��
= ¯ =

G�i,N��j��

G�i+k,N��j��
= 
2

i,i+k���

�L − 1 � i � J − 1 and L � i + k � J� �48�
and


2
i,i+k��� = �

d=0

k−1


2
i+d,i+d+1��� �49�

�v� For any two masses at the different sides of the nonlinear
spring or at the different sides of the input force, the fol-
lowing relationships hold:

G�i,1��j��

G�k,1��j��
�

G�i,2��j��

G�k,2��j��
= ¯ =

G�i,N��j��

G�k,N��j��

�1 � i � L − 1 and L � k � n or

1 � i � J − 1 and J � k � n� �50�

Property �i� is straightforward since, according to Eq. �6�, the
spectrum of the displacement of the ith mass can be expressed as

Xi+1�j�� = �
k=1

N

G�i+1,k��j��Uk�j�� �51�

Using Proposition 1, Eq. �51� can be written as

Xi+1�j�� = �
k=1

N


k
i,i+1�j��G�i,k��j��Uk�j��

= 
1
i,i+1�j���

k=1

N

G�i,k��j��Uk�j�� �52�

Therefore, Xi+1�j��=
1
i,i+1�j��Xi�j��.

The proof of properties �ii�–�v� also only needs some simple
calculations. The details are therefore omitted here.

Proposition 1 and Properties �i�–�v� are an important develop-
ment for the NOFRF based nonlinear system frequency domain
analysis and are especially useful for the detection of nonlinearity
in locally nonlinear one-dimensional chain type structures. Obvi-
ously, a direct application of these properties in the detection of
nonlinearity in system �26� can be achieved by determining the
NOFRFs associated with all the masses in the system, evaluating
and comparing the ratios of the NOFRFs associated with two
consecutive masses, and finally determining J in Eqs. �42� and
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�43� from the evaluated NOFRFs’ ratios so as to locate the posi-
tion of the nonlinear component. Other more effective methods
can also be developed based on the proposition and properties and
will be discussed in details in other publications. In Sec. 4, simu-
lation examples will be used to demonstrate the validity of these
important properties with locally nonlinear one-dimensional chain
type structures.

4 Numerical Study
To verify the analysis results in Sec. 3, a damped 8DOF oscil-

lator was used to conduct numerical studies, in which the fourth
spring was nonlinear. As widely used in modal analysis, the damp-
ing was assumed to be proportional to the stiffness, e.g., C=�K.
The values of the system parameters were taken as

m1 = ¯ = m8 = 1, r1 = k1 = ¯ = k8 = 3.5531 � 104, � = 0.01

r2 = 0.8 � r1
2, r3 = 0.4 � r1

3, w1 = �r1, w2 = 0.1�2k2

w3 = 0

and the input was a harmonic force acting on the sixth mass,
u�t�=A sin�2��20t�.

It is well-known that when a nonlinear system is subject to a
harmonic input

u�t� = A cos��Ft + �� �53�

superharmonics can appear in the system output response. These
superharmonics can be expressed using the NOFRFs as follows
�31�:

X�jk�F� = �
n=1

��N−k+1�/2�

Gk+2�n−1��jk�F�Ak+2�n−1��jk�F�

�k = 0,1, . . . ,N� �54�

where � · � means to take the integer part, and

An�j�− n + 2k��F� =
1

2n

n!

k ! �n − k�!

A
nej�−n+2k�� �55�

�56�

If only the NOFRFs up to fourth order is considered, i.e., N=4,
according to Eq. �54�, the spectra of the displacements of the eight
masses �32,33� can be written as

Xi�j�F� = G�i,1��j�F�A1�j�F� + G�i,3��j�F�A3�j�F�

Xi�j2�F� = G�i,2��j2�F�A2�j2�F� + G�i,4��j2�F�A4�j2�F�

Xi�j3�F� = G�i,3��j3�F�A3�j3�F�

Xi�j4�F� = G�i,4��j4�F�A4�j4�F� �i = 1, . . . ,8� �57�

From Eq. �57�, it is known that, using the method in Ref. �34�, the
system responses to two different inputs with the same waveform
but different strengths are sufficient to be used to estimate the
NOFRFs up to the fourth order. Therefore, in this numerical study,
two sinusoidal input signals with amplitudes A�1�=0.8 and A�2�

=1.0, respectively, were used. Simulation studies were conducted
using the fourth-order Runge–Kutta method to obtain the re-
sponses of the system to the sinusoidal inputs. The responses un-
der the two different inputs are denoted as xi

�1� and xi
�2� �i=1,

. . . ,8�, whose corresponding FFT spectra are denoted as Xi
�1� and

Xi
�2�. Ak� · �, �k=1,2 ,3 ,4� in Eq. �57� corresponding the two dif-

ferent inputs will be denoted as Ak
�1�� · � and Ak

�2�� · �, �k=1,2 ,3 ,4�,
respectively. According to Eq. �57�, the fundamental harmonic
output components Xi

�1��j�F� and Xi
�2��j�F� �i=1, . . . ,8� corre-

sponding to the two different inputs can be expressed as

�Xi
�1��j�F�

Xi
�2��j�F�

� = �A1
�1��j�F� A3

�1��j�F�
A1

�2��j�F� A3
�2��j�F�

��G�i,1��j�F�

G�i,3��j�F� � �58�

Therefore, G�i,1��j�F� and G�i,3��j�F� can be evaluated as

�G�i,1��j�F�

G�i,3��j�F� � = �A1
�1��j�F� A3

�1��j�F�
A1

�2��j�F� A3
�2��j�F�

�−1�Xi
�1��j�F�

Xi
�2��j�F�

� �59�

Similarly G�i,2��j2�F� and G�i,4��j2�F� can also be obtained. The
evaluated results of G1�j�F�, G3�j�F�, G2�j2�F�, and G4�j2�F�
for all masses are given in Table 1. According to the analysis
results in Sec. 3, it is known that the following relationships
should be tenable:


1
i,i+1�j�F� =

G�i,1��j�F�

G�i+1,1��j�F�
=

G�i,3��j�F�

G�i+1,3��j�F�
= 
3

i,i+1�j�F�

for i = 1,2,6,7


1
i,i+1�j�F� =

G�i,1��j�F�

G�i+1,1��j�F�
�

G�i,3��j�F�

G�i+1,3��j�F�
= 
3

i,i+1�j�F�

for i = 3,4,5 �60�


2
i,i+1�j2�F� =

G�i,2��j2�F�

G�i+1,2��j2�F�
=

G�i,4��j2�F�

G�i+1,4��j2�F�
= 
4

i,i+1�j2�F�

for i = 1, . . . ,7

From the NOFRFs in Table 1, 
1
i,i+1�j�F�, 
3

i,i+1�j�F�, 
2
i,i+1�j2�F�,

and 
4
i,i+1�j2�F� �i=1, . . . ,7� can be evaluated. Moreover, from

Eqs. �38� and �41�, the theoretical values of 
1
i,i+1�j�F�,


3
i,i+1�j�F�, 
2

i,i+1�j2�F�, and 
4
i,i+1�j2�F� �i=1, . . . ,7� can also be

calculated. Both the evaluated and theoretical values of

Table 1 The evaluated results of G1„j�F…, G3„j�F…, G2„j2�F…, and G4„j2�F…

G1�j�F�
��10−6�

G3�j�F�
��10−9�

G2�j2�F�
��10−9�

G4�j2�F�
��10−10�

Mass 1 −1.9442+2.8776i 5.4586−7.3663i 6.0215−12.9855i −1.9521−3.4108i
Mass 2 −4.1766+4.8383i 11.5721−12.2812i 18.5089−19.1412i −1.3474−7.1855i
Mass 3 −6.7369+5.0608i 18.3492−12.5736i 38.1986−9.3255i 3.9767−10.0350i
Mass 4 −9.2319+2.9520i −12.7969+5.4557i −38.0890+6.2165i −4.6556+9.5167i
Mass 5 −10.7758−1.6643i −5.4352+7.5923i −16.5271+16.8545i 1.1500+6.3785i
Mass 6 −10.1014−8.3275i 1.2207+7.2432i −1.2526+13.2872i 2.7770+2.3907i
Mass 7 −15.1122−0.8377i 6.0974+5.9104i 6.2132+5.7292i 2.2699−0.4817i
Mass 8 −17.3365+3.5237i 8.6436+4.8795i 8.6698+0.5735i 1.5053−1.8507i
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1
i,i+1�j�F�, 
3

i,i+1�j�F�, 
2
i,i+1�j2�F�, and 
4

i,i+1�j2�F� �i=1, . . . ,7�
are given in Tables 2 and 3.

It can be seen that the evaluated results match the theoretical
results very well. Moreover, the results shown in Tables 2 and 3
have a strict accordance with the relationships in Eqs. �42� and
�43�. Therefore, the numerical study verifies the properties of the
NOFRFs of locally nonlinear one-dimensional chain type system
�26�, as described in Sec. 3.

As indicated in the end of Sec. 3, the above procedure for
validating the properties of the NOFRFs itself actually presents a
method of detecting the position of nonlinearity in one-
dimensional chain type structures. By imposing two excitation
forces with the same waveform but different strengths at any point
of the chain type structure respectively, as demonstrated above,
the NOFRFs up to the fourth order associated with all masses can
be estimated from the corresponding vibration responses of the
system, and 

1

i,i+1�j�F�
 and 

3
i,i+1�j�F�
 can be calculated from

the estimated NOFRFs. By determining the two consecutive
masses for which 

1

i,i+1�j�F�
� 

3
i,i+1�j�F�
, it can be concluded

that the component on the right side of the mass on the left is
nonlinear. Although this standard detection procedure generally
requires the vibration responses of all masses, Properties �iv� and
�v� imply that the procedure can actually be implemented using
only two measurements to determine whether the nonlinear ele-
ment is located between the two measurement points. For ex-
ample, if only the vibrations of the sixth and eighth masses are
measured, then it can be known that 

1

6,8�j�F�
= 

3
6,8�j�F�
.

Therefore one can conclude that there is no nonlinear component
between mass 6 and mass 8.

5 Conclusions
In the present study, the relationships between the NOFRFs of

nonlinear one-dimensional chain type structures have been inves-
tigated to reveal important properties of this class of nonlinear
systems. The derivation have considered the more general case,
where the input force can be added on any mass in the system and
the system damping characteristics have also been taken into ac-
count. The results have considerable significance for the applica-
tion of the NOFRF concept in engineering practices to locate the
position of nonlinearity in locally nonlinear one-dimensional

chain type systems so as to diagnose and locate faults in the sys-
tems, which make the system behave nonlinearly. Further research
results on this application will be discussed in later publications.
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Nomenclature
x�t�, u�t� � the output and input of the nonlinear

system
X�j��, U�j�� � the spectrum of the system output

and input
hn��1 , . . . ,�n� � the nth order Volterra kernel

Hn�j�1 , . . . , j�n� � the nth order GFRF
Gn�j�� � the nth order NOFRF

M, C, K � the system mass, damping, and stiff-
ness matrices

mi, ci, ki � the ith mass, damping, and stiffness
parameter

SLS�	� � the restoring force of the nonlinear
spring

SLC�	� � the restoring force of the nonlinear
damper

ri, wi �i=1, . . . , P� � the nonlinear stiffness and damping
characteristics parameters

Fnon � the nonlinear force
xi�t�, Xi�j�� � the displacement and the output fre-

quency response of the ith mass
Θ�j�� � the transform function of the linear

MDOF oscillator
Q�i,l��j�� � the element of the ith row and the lth

column of the inverse matrix of
Θ�j��

h�i,j���1 , . . . ,� j� � the jth order Volterra kernel associ-
ated to the ith mass

Table 2 The evaluated and theoretical values of �1
i,i+1

„j�F… and �3
i,i+1

„j�F…


1
i,i+1�j�F� 
3

i,i+1�j�F�

Evaluated Theoretical Evaluated Theoretical

i=1 0.5396−0.0639i 0.5396−0.0639i 0.5396−0.0639i 0.5396−0.0639i
i=2 0.7412−0.1614i 0.7412−0.1614i 0.7412−0.1614i 0.7412−0.1614i
i=3 0.8211−0.2856i 0.8211−0.2856i −1.5678+0.3142i −1.5678+0.3141i
i=4 0.7955−0.3968i 0.7955−0.3968i 1.2729+0.7743i 1.2730+0.7744i
i=5 0.7160−0.4255i 0.7160−0.4255i 0.8963+0.9014i 0.8963+0.9014i
i=6 0.6969+0.5124i 0.6969+0.5124i 0.6969+0.5124i 0.6969+0.5124i
i=7 0.8277+0.2166i 0.8277+0.2166i 0.8277+0.2166i 0.8277+0.2166i

Table 3 The evaluated and theoretical values of �2
i,i+1

„j2�F… and �4
i,i+1

„j2�F…


2
i,i+1�j2�F� 
4

i,i+1�j2�F�

Evaluated Theoretical Evaluated Theoretical

i=1 0.5078−0.1764i 0.5078−0.1765i 0.5078−0.1765i 0.5078−0.1765i
i=2 0.5727−0.3613i 0.5730−0.3611i 0.5729−0.3613i 0.5730−0.3611i
i=3 −1.0158+0.0791i −1.0158+0.0791i −1.0158+0.0791i −1.0158+0.0791i
i=4 1.3178+0.9677i 1.3180+0.9670i 1.3176+0.9674i 1.3180+0.9670i
i=5 1.3735+1.1144i 1.3733+1.1145i 1.3735+1.1145i 1.3733+1.1145i
i=6 0.9568+1.2563i 0.9568+1.2562i 0.9568+1.2562i 0.9568+1.2562i
i=7 0.7570+0.6108i 0.7570+0.6107i 0.7570+0.6108i 0.7570+0.6107i
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G�i,l��j�� � the lth order NOFRF associated to
the ith mass


n
i,i+1��1+ ¯+�n� � the ratio between the nth GFRFs of

the ith and �i+1�th masses

n

i,i+1�j�� � the ratio between the nth NOFRFs of
the ith and �i+1�th masses

�n
L−1,L�j�1 , . . . , j�n� � the term introduced by the nonlinear

force Fnon for the nth order GFRF
�n

L−1,L�j�� � the term introduced by the nonlinear
force Fnon for the nth order NOFRF

Appendix A: GFRFs of the Locally Nonlinear One-
Dimensional Chain Type Structures

From Eq. �25�, the GFRFs H�i,j��j�1 , . . . , j� j�, �i=1, . . . ,n, j
=1, . . . ,N� can be determined using the harmonic probing method
�20,21�.

First consider the input u�t� is of a single harmonic

u�t� = ej�t �A1�
Substituting Eq. �A1� and

xi�t� = H�i,1��j��ej�t �i = 1, . . . ,n� �A2�

into Eq. �25� and extracting the coefficients of ej�t yields

�A3�
where

H1�j�� = �H�1,1��j�� ¯ H�n,1��j���T �A4�

From Eq. �A4�, it is known that

�A5�
Denote

��j�� = − M�2 + jC� + K �A6�
and

�−1�j�� = �Q�1,1��j�� ¯ Q�1,n��j��

] � ]

Q�n,1��j�� ¯ Q�n,n��j�� � �A7�

It can be obtained from Eqs. �A5�–�A7� that

H�i,1��j�� = Q�i,J��j�� �i = 1, . . . ,n� �A8�

Thus, for any two consecutive masses, the relationship between
the first order GFRFs can be expressed as

H�i,1��j��

H�i+1,1��j��
=

Q�i,J��j��

Q�i+1,J��j��
= 
1

i,i+1��� �i = 1, . . . ,n − 1�

�A9�
The above procedure used to analyze the relationships between
the first order GFRFs can be extended to investigate the relation-

ship between the N̄th order GFRFs with N̄
2. To achieve this,
consider the input

u�t� = �
k=1

N̄

ej�kt �A10�

Substituting Eq. �A10� and

xi�t� = H�i,1��j�1�ej�1t + ¯ + H�i,1��j�N̄�ej�Nt + ¯ + N̄ ! H�i,N̄�

��j�1, . . . , j�N̄�ej��1+¯+�N̄�t + ¯ �i = 1, . . . ,n� �A11�

into Eq. �25� and for the first and the last rows of Eq. �25�, ex-
tracting the coefficients of ej��1+¯+�N̄�t yields

�− m1��1 + ¯ + �N̄�2 + j�c1 + c2���1 + ¯ + �N̄� + �k1 + k2��H�1,N̄�

��j�1, . . . , j�N̄� − �jc2��1 + ¯ + �N̄� + k2�H�2,N̄�

��j�1, . . . , j�N̄� = 0 �A12�

�− mn��1 + ¯ + �N̄�2 + jcn��1 + ¯ + �N̄� + kn�H�n,N̄�

��j�1, . . . , j�N̄� − �jcn��1 + ¯ + �N̄� + kn�H�n−1,N̄�

��j�1, . . . , j�N̄� = 0 �A13�

and similarly it can be deduced that, for the masses that are not
connected to the Lth spring, the GFRFs satisfy the following re-
lationships:

�− mi��1 + ¯ + �N̄�2 + j�ci + ci+1���1 + ¯ + �N̄� + ki + ki+1�H�i,N̄�

��j�1, . . . , j�N̄� − �jci��1 + ¯ + �N̄� + ki�H�i−1,N̄�

��j�1, ¯ , j�N̄� − �jci+1��1 + ¯ + �N̄� + ki+1�H�i+1,N̄�

��j�1, . . . , j�N̄� = 0 �i � 1,L − 1,L,n� �A14�

For the two masses that are connected to the Lth spring, the
GFRFs satisfy the following relationships:

�− mL−1��1 + ¯ + �N̄�2 + j�cL−1 + cL���1 + ¯ + �N̄� + kL−1

+ kL�H�L−1,N̄��j�1, . . . , j�N̄� − �jcL−1��1 + ¯ + �N̄�

+ kL−1�H�L−2,N̄��j�1, ¯ , j�N̄� − �jcL��1 + ¯ + �N̄�

+ kL�H�L,N̄��j�1, . . . , j�N̄� + �
N̄

L−1,L�j�1, . . . , j�N̄� = 0

�A15�

�− mL��1 + ¯ + �N̄�2 + j�cL + cL+1���1 + ¯ + �N̄� + kL

+ kL+1�H�L,N̄��j�1, . . . , j�N̄� − �jcL��1 + ¯ + �N̄�

+ kL�H�L−1,N̄��j�1, ¯ , j�N̄� − �jcL+1��1 + ¯ + �N̄�

+ kL+1�H�L+1,N̄��j�1, . . . , j�N̄� − �
N̄

L−1,L�j�1, . . . , j�N̄� = 0

�A16�

In Eqs. �A15� and �A16�, �
N̄

L−1,L�j�1 , . . . , j�N̄� represents the ex-

tra terms introduced by Fnon=�i=2
P wi�ẋL−1− ẋL�i+�i=2

P ri�xL−1−xL�i

for the N̄th order GFRFs, for example, for the second order
GFRFs

�2
L−1,L�j�1, j�2� = �− w2�1�2 + r2��H�L−1,1��j�1�H�L−1,1��j�2�

+ H�L,1��j�1�H�L,1��j�2� − H�L−1,1��j�1�H�L,1�

��j�2� − H�L−1,1��j�2�H�L,1��j�1�� �A17�

Denote

HN̄�j�1, . . . , j�N̄� = �H�1,N̄��j�1, . . . , j�N̄� ¯ H�n,N̄��j�1, . . . , j�N̄��T

�A18�

and

�A19�

then Eqs. �A12�–�A16� can be written in a matrix form as

Θ�j��1 + ¯ + �N̄��HN̄�j�1, . . . , j�N̄� = �N̄�j�1, . . . , j�N̄�

�A20�

so that
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HN̄�j�1, . . . , j�N̄� = Θ−1�j��1 + ¯ + �N̄���N̄�j�1, . . . , j�N̄�

�A21�

Therefore, for each mass, the N̄th order GFRF can be calculated
as

H�i,N̄��j�1, . . . , j�N̄�

= �Qi,L−1�j��1 + ¯ + �N̄��,Qi,L�j��1 + ¯ + �N̄���

�� �
N̄

L−1,L�j�1, . . . , j�N̄�

− �
N̄

L−1,L�j�1, . . . , j�N̄�
��i = 1, . . . ,n� �A22�

Consequently, for two consecutive masses, the N̄th order GFRFs
have the following relationships:

H�i,N̄��j�1, . . . , j�N̄�

H�i+1,N̄��j�1, . . . , j�N̄�

=
Qi,L−1�j��1 + ¯ + �N̄�� − Qi,L�j��1 + ¯ + �N̄��

Qi+1,L−1�j��1 + ¯ + �N̄�� − Qi+1,L�j��1 + ¯ + �N̄��

= 

N̄

i,i+1��1 + ¯ + �N̄� �i = 1, . . . ,n − 1� �A23�

Appendix B: Proof of Proposition 1
For the first rows of Eqs. �33� and �38�, it is known that

�− m1�2 + j�c1 + c2�� + �k1 + k2��G�1,N̄��j��

− �jc2� + k2�G�2,N̄��j�� = 0�1 � N̄ � N� �B1�

Therefore


1
1,2�j�� = ¯ = 
N

1,2�j�� =
k2 + jc2�

�− m1�2 + j��c1 + c2� + k1 + k2�
�B2�

Substituting Eq. �B2� into the second rows of Eqs. �33� and �38�
yields


1
2,3��� = ¯ = 
N

2,3���

=
jc3� + k3

�− m2�2 + �1 − 
N
1,2�����j�c2 + k2� + j�c3 + k3�

�B3�

Iteratively using the above procedure until i= �L−2�, property �41�
can be proved for 1� i�L−2.

Similarly, starting from the nth rows of Eqs. �33� and �38�, and
iteratively using the above procedure until i=J, property �41� can
also be proved for J� i�N.

From Eq. �37�, it can be known that, for the masses located
between the nonlinear spring and the input force, the following
relationship is tenable:

G�i,2��j��

G�i+1,2��j��
= ¯ =

G�i,N��j��

G�i+1,N��j��

=
Qi,L−1�j�� − Qi,L�j��

Qi+1,L−1�j�� − Qi+1,L�j��
�L − 1 � i � J − 1�

�B4�

So a part of property �42� is proved.
According to the having proved property �41�, it can be known

that


1
L−2,L−1��� =

G�L−2,1��j��

G�L−1,1��j��
= ¯ = 
N

L−2,L−1��� =
G�L−2,N��j��

G�L−1,N��j��

�B5�
Substituting �B-5� into the following equations which are also the
�L−1�th rows of Eqs. �33� and �38�, i.e.,

�− mL−1�2 + j�cL−1 + cL�� + kL−1 + kL�G�L−1,1��j��

− �jcL−1� + kL−1�G�L−2,1��j�� − �jcL� + kL�G�L,1��j�� = 0

�B6�

�− mL−1�2 + j�cL−1 + cL�� + kL−1 + kL�G�L−1,N̄��j��

− �jcL−1� + kL−1�G�L−2,N̄��j�� − �jcL� + kL�G�L,N̄��j��

+ �
N̄

L−1,L�j�� = 0 �2 � N̄ � N� �B7�

yields


1
L−1,L���

=
jcL� + kL

�− mL−1�2 + �1 − 
1
L−2,L−1�����j�cL−1 + kL−1� + j�cL + kL�

�B8�
and



N̄

L−1,L���

=
jcL� + kL

�− mL−1�2 + �1 − 

N̄

L−2,L−1�����j�cL−1 + kL−1� + j�cL + kL�

��1 +
�

N̄

L−1,L�j��

jcL� + kL

��2 � N̄ � N� �B9�

Therefore



N̄

L−1,L��� = 
1
L−1,L����1 +

�
N̄

L−1,L�j��

jcL� + kL

� � 
1
L−1,L��� �2 � N̄

� N� �B10�

Consequently, by substituting Eq. �B10� into the Lth rows of Eqs.
�33� and �38�, it can be proved that



N̄

L,L+1��� � 
1
L,L+1��� �2 � N̄ � N� �B11�

Iteratively using the above procedure until i= �J−1�, property �42�
can be proved for L−1� i�J−1. Thus the proposition is proved.

�
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Strain Rate Effects and
Rate-Dependent Constitutive
Models of Lead-Based and
Lead-Free Solders
As traditional lead-based solders are banned and replaced by lead-free solders, the drop
impact reliability is becoming increasingly crucial because there is little understanding of
mechanical behaviors of these lead-free solders at high strain rates. In this paper, me-
chanical properties of one lead-based solder, Sn37Pb, and two lead-free solders, Sn3.5Ag
and Sn3.0Ag0.5Cu, were investigated at strain rates that ranged from 600 s�1 to
2200 s�1 by the split Hopkinson pressure and tensile bar technique. At high strain rates,
tensile strengths of lead-free solders are about 1.5 times greater than that of the Sn37Pb
solder, and also their ductility are significantly greater than that of the Sn37Pb. Based on
the experimental data, strain rate dependent Johnson–Cook models for the three solders
were derived and employed to predict behaviors of solder joints in a board level elec-
tronic package subjected to standard drop impact load. Results indicate that for the drop
impact analysis of lead-free solder joints, the strain rate effect must be considered and
rate-dependent material models of lead-free solders are indispensable.
�DOI: 10.1115/1.3168600�
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1 Introduction
For a long time the eutectic solder Sn37Pb �63% tin and 37%

lead in weight� was widely used as an interconnecting alloy in
microelectronic packaging technologies because of its advantages
in manufacturing, mechanical properties, and costs. Nowadays,
due to the harmfulness of the lead element to the environment,
lead-based solders were banned in the European Union �1� and
many other countries. As a result, a variety of lead-free solder
alloys such as SnAg �tin and silver� and near-eutectic SnAgCu
�tin, silver, and copper� alloy were used to replace lead-based
solders. However, this replacement induces new challenges to
manufacturers of electronic products. The major challenge is the
drop impact reliability of mobile electronic devices such as mo-
bile phones and personal digital assistants, etc. Researches �2–4�
showed that lead-free solder joints, which are key parts functioned
as electric signal channels, thermal conductors, and mechanical
supports in microelectronic packages �5�, exhibit much poorer
performance than the eutectic Sn37Pb joint does in the drop im-
pact tests specified by the Joint Electron Devices Engineering
Council �JEDEC� �6�. Furthermore, under the drop impact load
the main failure mode migrates from bulk fracture in Sn37Pb
solder joints to interface cracking in lead-free solder joints �4,7�.
Although this phenomenon has not been well understood, one
explanation is that the high strain rate caused by the drop impact
load enhances the bulk strengths of lead-free solder joints, and the
interface between the solder joints and the printed circuit board
�PCB� becomes relatively vulnerable. This explanation seems to
suggest that strain rate affect the drop impact performance of lead-
free solder joints critically.

The most commonly used drop impact testing condition is the
condition H recommended by the JEDEC �6�. This condition is
characterized by a half-sine acceleration pulse with a peak value

of 2900 G �1 G=9.8 m /s2� and a time duration of 0.3 ms. There
are several different estimations on the strain rate level under this
loading condition. Wang and Yi �8� and Siviour et al. �9� made
estimations in a level of 103 s−1 based on general knowledge of
impact problems. A strain rate of 10 s−1 was estimated by Suh et
al. �4� without detailed explanation. More recently, Wong et al.
�10� pointed out that the strain rate is in a range from 0.1 s−1 to
300 s−1 in mobile applications. Their estimation was based on
that, during the drop impact testing of a board level package, the
vibrations of the PCB and the component, which sandwich the
solder joints, cause deformation of the solder joints. Hence, the
strain rate is determined by the frequency of the PCB and the
magnitude of strains in the solder joints. Considering the existence
of higher frequency vibrating modes and plastic deformation in
the solder joints, the strain rate was possibly underestimated by
them. Although there are arguments on the magnitude of strain
rate in the solder joints, the effect of strain rate on the behavior of
solder joints, especially on the behaviors of lead-free solder joints,
is drawing more and more attention.

Many experimental investigations on the strain rate effect were
conducted at strain rates less than 1 s−1. Earlier works �11–14�
related to these low strain rates focused on the establishment of
material models to describe creep behaviors of solder joints.
Within the same range of strain rates, mechanical properties, es-
pecially the tensile properties of lead-free solders, were inten-
sively investigated recently �15–23�. Most of these researches
support that lead-free solders are more sensitive to strain rate than
lead-based solders do, and the more solders contain Ag the more
they are sensitive to strain rate.

As for the experimental works on strain rates greater than
1 s−1, they mainly aimed to investigate the drop impact related
behaviors of solders. At strain rates that ranged from 102 s−1 to
104 s−1, the split Hopkinson pressure bar technique �SHPB� �24�
was mainly used to characterize the mechanical properties of ma-
terials. Dynamic behaviors of lead-based solders were investi-
gated by Lee and Dai �25� using the split Hopkinson torsional bar
technique. Wang and Yi �8� obtained compressive stress-strain
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curves of Sn37Pb solder at high strain rates that ranged from
340 s−1 to 1160 s−1 by the SHPB. Afterwards, tensile stress-
strain curves of Sn37Pb solder were also investigated by Wang
�26� using the split Hopkinson tensile bar technique �SHTB�. Siv-
iour et al. �9� investigated compressive stress-strain behaviors of
Sn37Pb, Sn3.5Ag, and Sn3.0Ag0.5Cu solders at strain rates that
ranged from 450 s−1 to 2720 s−1 and at various temperatures, and
the strain rate sensitivities of the solders were discussed. Recently,
Wong et al. �10� investigated compressive behaviors of Sn37Pb,
Sn3.5Ag, Sn3.0Ag0.5Cu, and Sn1.0Ag0.1Cu solders at strain
rates that ranged from 0.005 s−1 to 300 s−1 by using the drop-
weight tester developed by them.

Although some experimental data are available currently, there
is a diversity of those test data and a lack of tensile properties of
lead-free solders at the strain rates matching the JEDEC standard
drop impact conditions. Currently there are no applicable material
models that can describe the high strain rate behaviors of solders.
As a result, the linear elastic or rate-independent elastic-plastic
material model was applied to solder joints in the drop impact
simulations �27–30�. These models neglect strain rate effects com-
pletely and obviously lead to inaccurate predictions of stresses
and strains in solder joints.

In order to take the strain rate effect into account, one prefer-
able constitutive model is the Johnson–Cook model �31�. Al-
though it is empirical in nature, the Johnson–Cook model has
been widely used to simulate large strain and high strain rate
deformation process of metals because of its simplicity and good
agreement with experimental results �32–34�. Another advantage
of the Johnson–Cook model is that it can be easily implanted into
mainstream commercial finite element analysis tools so that engi-
neers can conveniently use it to simulate the drop impact process
of mobile electronic products.

In this paper, the mechanical behaviors of Sn37Pb, Sn3.5Ag,
and Sn3.0Ag0.5Cu in quasistatic and at strain rates that ranged
from 600 s−1 to 2200 s−1 were investigated by a conventional
materials tester and by the SHPB and SHTB. The strain rate sen-
sitivity, fracture strain, and tensile strength of the three solders
were discussed and compared with the results from other re-
searchers. Based on the experimental data we obtained, rate-
independent trilinear elastic-plastic material models and rate-
dependent Johnson–Cook models for the three solders were
proposed and validated. Finally, the Johnson–Cook models were
applied to predict behaviors of solder joints in a board level drop
impact test specified by the JEDEC �6�. Strain rate, peeling stress,
and equivalent plastic strain of the solder joints during the drop
impact were predicted and compared with that by rate-
independent material models.

2 Experimental Procedures

2.1 Specimen Preparation. Commercial ingots of Sn37Pb,
Sn3.5Ag, and Sn3.0Ag0.5Cu were melted in a crucible and
molded into rods. The process was intentionally slowed down to
make sure that there were no voids formed in the rods. Then the
rods were quickly immerged into water and aged for 15 days in
the air to stable their microstructures. Finally, the rods were ma-
chined into cylindrical specimens in the specific dimension.
Specimens used for quasistatic tensile and compressive tests have
sizes of �8�56 mm2 and �12�12 mm2, respectively. Speci-
mens for the SHPB tests have a size of �12�6 mm2. For the
SHTB tests, specimens are of �5�8 mm2 in gauged part but
have a total length of 40 mm with two end screws, which are used
to install the specimen into the incident bar and output bar. More
details of the specimen can be found in Fig. 1�a�.

2.2 Quasistatic Compressive and Tensile Tests. The quasi-
static compressive and tensile tests were conducted on an MTS-
809 materials tester at the strain rate of 0.001 s−1. Three speci-
mens for each kind of solders were tested and the average of the
three specimens’ data was read as the final result of the solder.

2.3 SHPB and SHTB Tests. The SHPB is a well developed
technique and has been widely used to test mechanical properties
of materials at strain rates that ranged from 102 s−1 to 104 s−1. An
excellent review of the experimental technique was provided by
Follansbee �35�. For the SHTB, there are various test setups. In
this investigation, a separated sleeve SHTB device, which is based
on the reflective SHTB device proposed by Nicholas �36�, was
used. Figure 1�b� shows a schematic setup of the device. It con-
sists of a striker of �37�300 mm2, two separated steel circular
tubes �the sleeve in Fig. 2�b��, and two identical AISI4340 steel
bars of �14.5�1000 mm2 inside the sleeves. The cylindrical
specimen was installed into the two bars by its screwed ends.
During the test, the striker bar impacts the left end block and
compresses the tubes to generate a stress pulse on the right end
block. The right end block then produces tensile stress pulse in the
incident bar and in the specimen. Two strain gauges were placed
on the incident and output bars to measure the incident, reflected,
and transmitted pulses. After about three reflections of the stress
wave, a uniform stress state was achieved in the specimen. Then
the strain rate �̇�t�, strain ��t�, and ��t� stress in the specimen
were calculated by the reflected strain pulses �R�t� and the trans-
mitted strain pulses �T�t� �37�:

�̇ = −
2C0

l0
�R, � =�

0

t

�̇dt = −
2C0

l0
�

0

t

�Rdt, � =
EA

AS
�T �1�

where E and A are Young’s modulus and the cross-section area of
the specimen, and C0 is the wave velocity in the bar. AS and l0 are
the initial cross-section area and initial length of the specimen,
respectively. In this investigation, Young’s modulus and the mass
density of the steel bar are 200 GPa and 7850 kg /m3, respec-
tively. The wave velocity in the bar is 5048 m/s.

In the reflective SHTB �36�, there are noises caused by wave
reflection at the specimen-bar connections. However, in the sepa-
rated sleeve SHTB device used here the noise can be effectively
suppressed since the specimen is subjected to a tensile stress pulse
directly. For the test the strain rate that exceeds 1000 s−1, a

Fig. 1 „a… Specimen and its sizes for the split Hopkinson ten-
sile bar „SHTB… tests, „b… schematic setup of the separated
sleeve SHTB testing and „c… raw signals of the incident and
transmitted pulses
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greater striking speed causes higher noise level; hence a more
sensitive semiconductor strain gauge was used to acquire the
transmitted signals. Typical recorded signals of a Sn3.5Ag speci-
men in a SHTB test at strain rate 1800 s−1 are presented in Fig.
1�c�. A sampling frequency of 5 MHz was used.

All the SHPB and SHTB tests were carried out at room tem-
perature. For each kind of solders, five specimens at one strain
rate were tested. The final data were obtained by averaging the
available data of the five specimens.

3 Results and Discussions

3.1 Quasistatic Behaviors. Young’s modulus �E�, yield stress
��y�, ultimate tensile stress �UTS�, and tensile fracture strain �� f�
obtained from the quasistatic tests are listed in Table 1. The true
stress-strain curves are shown in Fig. 2. Under quasistatic condi-
tions, the Sn3.5Ag behaves similarly to the Sn37Pb, and its UTS
is almost the same as that of the Sn37Pb. The Sn3.0Ag0.5Cu
solder has the greatest UTS, but its fracture strain is the same as
the Sn37Pb. There is no significant difference between the com-
pressive and tensile behaviors for the three solders. Linear hard-
ening and plastic flow at constant stress can be observed for the
three solders. Based on the observation, trilinear elastic-plastic
models were proposed for the three solders, and more detail about
these models can be found in Sec. 4.

3.2 Compressive Behaviors at High Strain Rates. Figure 3
shows the true stress-strain relations acquired by the SHPB tests at
three strain rates, 600 s−1, 1200 s−1, and 2200 s−1. It shows that
strain softening occurs as the true strain exceeds 0.1, and the
softening becomes significant as the strain rate increases. The
softening is possibly caused by the temperature rise induced by
the heat transformed from plastic work during the high speed
deformation, which is regarded as an adiabatic process. All the
three solders are sensitive to strain rate, and their dynamic yield
stresses are greatly higher than static ones. In order to compare
strain rate sensitivities of the three solders, flow stresses at 2%
true strain were plotted against strain rates in log-log scale, as
shown in Fig. 4. The data were fitted by a straight line, and the
gradient of the line can be interpreted as the strain rate sensitivity.
As shown, sensitivities of the Sn37Pb, Sn3.5Ag, and
Sn3.0Ag0.5Cu are 0.05, 0.15, and 0.11, respectively. The Sn3.5Ag
is the most sensitive to the strain rate, while the Sn37Pb is the
most insensitive. Similar conclusions were drawn by Wong et al.
�10�. They presented sensitivities of 0.07, 0.10, and 0.11 for the
Sn37Pb, Sn3.5Ag, and Sn3.0Ag0.5Cu solders at strain rates that
ranged from 0.01 s−1 to 300 s−1 but by using flow stresses at
10% true strain.

3.3 Tensile Behaviors at High Strain Rates. Main tensile
mechanical properties of the three solders, the UTS and its corre-
sponding strain ����, the percent reduction in area �PRA�, and the

Fig. 2 True stress-strain curves at strain rate of 0.001 s−1: „a…
compressive and „b… tensile

Table 1 Mechanical properties of the three solders from the
quasistatic tensile tests at strain rate of 0.001 s−1

Solders
E

�GPa�
�y

�MPa�
UTS

�MPa� � f

Sn37Pb 30 35 43 0.16
Sn3.5Ag 45 29 42 0.20
Sn3.5Ag0.5Cu 54 38 51 0.16

Fig. 3 Compressive true stress-strain curves at high strain
rates: „a… Sn37Pb, „b… Sn3.5Ag, and „c… Sn3.0Ag0.5Cu
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percent elongation �PE� are summarized in Table 2. Figure 5
shows the true stress-strain relations obtained from the SHTB
tests at three strain rates, 600 s−1, 1200 s−1, and 1800 s−1. As
discussed in Sec. 3.1, under quasistatic conditions the UTSs of the
Sn3.5Ag and Sn3.0Ag0.5Cu are almost the same as that of the
Sn37Pb. However, at high strain rates they are about 1.5 times
greater than that of the Sn37Pb due to the strain rate effect. When
the strain rate increases, their UTSs increase but the correspond-
ing strains decrease slightly. As stress reaches the UTS, the neck-
ing process begins and it triggers an instable state in the specimen.
This leads the stress drops down, as shown in Figs. 5�b� and 5�c�.
Figure 6 presents the photographs of specimens after the SHTB
tests. For all the three solders, ruptures were observed under strain
rates of 1200 s−1 and 1800 s−1 but not under a strain rate of
600 s−1. A pronounced necking was observed in lead-free speci-
mens but not in the Sn37Pb. From Table 2, the PRA and the PE of
two lead-free solders are significantly greater than that of the
Sn37Pb solder. It suggests that two lead-free solders experience
greater plastic deformation before broken and they are more duc-
tile than the Sn37Pb under high strain rates. This observation sup-
ports the notion that in a drop impact test lead-free solder joints
prefer cracking along the solder joint-PCB interface to fracturing
in solder bulk due to its increased bulk strength �7� and great
ductility.

Since the tensile strength of solder is much more important in
the reliability assessment of solder joints, there are a lot of experi-
mental investigations on it. In order to present a clear and pan-
oramic view of the sensitivity of the tensile strength to strain rate,
UTSs acquired by different researchers at various strain rates for
lead and lead-free solders were surveyed and presented in Fig. 7.
It can be seen, for all the solders, that the UTS increases with the
increasing of strain rate and it increases more sharply in a high
strain rate range, especially for lead-free solders. At low strain
rates, UTSs of lead-free solders are close to the Sn37Pb. However,
at high strain rates, they are significantly greater than that of the
Sn37Pb. Figure 7�c� shows that the SnAgCu solders have higher
tensile strengths than the SnCu solders at the same strain rate.

4 Rate-Independent Material Models
The rate-independent elastic-plastic model proposed by Wiese

and Rzepka �30� was extensively used in numerical simulation of
solder joints. Similar models in trilinear form were derived based
on our quasistatic tensile test data in order to compare with rate-
dependent models in Sec. 6. The model is characterized by three
line segments and six parameters: �1, �2, �3�=100%�, �1, �2,
and �3. The first line segment defined by points �0, 0� and
��1,�1� describes the elastic behavior of the materials. The sec-
ond one defined by points ��1,�1� and ��2,�2� describes the

Fig. 4 Relations between the flow stresses at 2% strain and
strain rates in log-log scale. The lead-free solders are more
sensitive to strain rate than Sn37Pb.

Table 2 Mechanical properties of the three solders at high strain rates. The yield stress „�y… was obtained from the compressive
tests. The UTS and its corresponding strain „ε�

…, the PRA, and PE were from the tensile tests.

�̇
�s−1�

Sn37Pb Sn3.5Ag Sn3.0Ag0.5Cu

�y
�MPa�

UTS /��

�MPa/-�
PRA
�%�

PE
�%�

�y
�MPa�

UTS /��

�MPa/-�
PRA
�%�

PE
�%�

�y
�MPa�

UTS /��

�MPa/-�
PRA
�%�

PE
�%�

600 63 - - - 66 - - - 73 - - -
1200 58 103/0.158 50.7 42.9 72 158/0.116 83.2 64.6 83 162/0.100 81.6 65.5
1800 64 111/0.135 50.1 42.5 77 173/0.092 77.2 57.8 87 172/0.092 80.3 58.1

Fig. 5 Tensile true stress-strain curves at high strain rates: „a…
Sn37Pb, „b… Sn3.5Ag, and „c… Sn3.0Ag0.5Cu
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initial plasticity. The third line defined by points ��2,�2� and
��3,�3� models the saturated plasticity. All the model parameters
for the three solders derived by this research and by Wiese and
Rzepka �30� are presented in Table 3. It is noted that Wiese’s
model may predict greater stress at large strain than ours.

5 Rate-Dependent Material Models

5.1 Johnson–Cook Constitutive Model. A general form of
the Johnson–Cook model can be expressed as

� = �A + B��p�n��1 + C ln �̇���1 − T�m� �2�

where �, �p, and �̇� are the von Mises flow stress, the equivalent
plastic strain, and the dimensionless strain rate, respectively. �̇� is
defined as �̇�= �̇ / �̇0, in which �̇0 is a reference strain rate and a
value of 0.001 s−1 was assigned to it in this research. T� is the
homologous temperature defined as T�= �T−Tr� / �Tm−Tr�, in
which Tr and Tm are the reference temperature and melting tem-
perature of the materials, respectively. The reference temperature
was assigned to be room temperature here. There are five material
constants, A, B, C, m, and n in Eq. �2�. Here A is the yield stress
defined by the quasistatic compressive strain-stress data, B and n
represent the effects of strain hardening, C is used to describe the
strain rate effect, and m describes the effect of thermal softening.

5.2 Identification of Model Constants. The constants in the
Johnson–Cook model can be identified by considering the three
sets of brackets in Eq. �2� separately. The first step is to set out the
constants in the first set of brackets. For the quasistatic test con-
ducted at room temperature, �̇�=1 and T=Tr; thus Eq. �2� be-
comes

� = A + B��p�n �3�
The logarithm conversion of Eq. �3� is

ln�� − A� = ln B + n ln �p �4�

where A is the initial yield stress, which can be derived from the
stress-strain curve obtained from the quasistatic compressive tests
directly. Here, for the Sn37Pb, Sn3.5Ag, and Sn3.0Ag0.5Cu, their
A constants are 35 MPa, 29 MPa, and 38 MPa, respectively, as
listed in Table 1. Picking up the points located between the yield
point and the ultimate point on the stress-strain curves, let x
=ln �p and y=ln��−A�, then plot those points in x-y coordinate
plane, and fit those points by a straight line y=b1+k1x. The slope
of the line, k1, is identified as the material constant n. The inter-
cept, b1, is identified as ln B.

The next step is to identify the constant C. As for �p=0 and
T=Tr, Eq. �2� becomes

�/A = 1 + C ln �̇� �5�

where � is the dynamic yield stress at current strain rate, and its
value for each solder is listed in Table 2. Let x=ln �̇� and y
=� /A, for the three strain rates 600 s−1, 1200 s−1, and 2200 s−1;
the three points can be plotted in x-y coordinate plane. Fitting
them by a straight line y=b2+k2x, then we can identify the con-
stant C as k2.

By the procedure described above and the compressive test data
of the three solders, their Johnson–Cook models are derived and
presented in Table 4. The m given in Table 4 is not strictly based
on the experimental data and is picked up according to values
used for most metal materials since the lack of experiments at a
variety of temperatures.

5.3 Validation of Proposed Models and Discussions. In or-
der to validate the Johnson–Cook constitutive models given in this
paper, models defined by Table 4 were incorporated into the
ABAQUS/EXPLICIT �a commercial finite element analysis software
package� to simulate the SHPB and SHTB tests. Materials and
geometries of the incident, output bars, and specimen were ex-
actly the same as that in the experiments. Two steel bars and the
specimen were modeled by element type CAX4R, which is a con-
tinuum axial symmetric two-dimensional four-node quadrilateral
element in the ABAQUS �38�. In the SHPB simulation, element

Fig. 6 Specimens after the SHTB tests. The two lead-free sol-
ders experienced greater plastic deformation before broken
than Sn37Pb did.

Fig. 7 Ultimate tensile stresses of solders at various strain
rates: „a… Sn37Pb, „b… SnAg, and „c… SnAgCu and SnCu
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sizes in the bars and specimen were 5 mm and 1.2 mm, respec-
tively. Contact surfaces between the bar and the specimen were
defined as hard contacts without friction, which implies that the
contact is activated if and only if a pressure is built up between
the two defined surfaces. In the SHTB simulation, element sizes in
the bars and specimen were 5 mm and 0.3 mm, respectively.
Thread connections between the specimen and two bars were ne-
glected and treated as the tie constrains. The striker, sleeves, and
end blocks were neglected in the model; instead, a stress pulse
derived from experiments was exerted directly to the incident bar.
Automatic time step option was chosen for all the simulations to
ensure a stable solution.

The normal components of stress and strain in the axial direc-
tion of the specimen were picked up to plot the true stress-strain
curves. To avoid boundary effects, stress and strain at the integral
points of elements located in the middle of the specimen were
used and averaged. The stress-strain curves from numerical simu-
lations and Eq. �2� were compared with experimental data in Figs.
8–13. For all the cases, the simulation results agree quite well
with that calculated by Eq. �2�. This validates the numerical model
we used.

When the strain rates are 600 s−1 and 1200 s−1, there are good
agreements between the simulation and the experimental results
for all the three solders both under the compressive and tensile
conditions. In the cases the strain rate is 2200 s−1 or 1800 s−1,
the agreement is acceptable but not so good, especially for the
tensile cases. This is possibly due to the errors from both the
experiment and the simulation. First, unlike in the SHPB tests, in
the SHTB the specimen was connected into the incident and out-
put bars by screw threads. Since the specimen material is softer
than the steel bar, significant plastic deformation may occur in the
screws under high strain rates such as 1800 s−1, and this possibly
leads to those disagreements, as shown in Figs. 9�c�, 11�c�, and
13�c�. Second, softening or necking was observed in the experi-
ments but the Johnson–Cook model is intrinsically not able to
describe the behavior of work softening �39�. Besides, in the cur-
rent simulation model, softening or necking was not taken into
account. Fortunately, this does not affect the effectiveness of the
Johnson–Cook models derived here because these model con-
stants were determined by the compressive test data only.

Table 3 Elastic-plastic models based on the quasistatic tensile tests and from Ref. †30‡

Solders
�1

�%�
�2

�%�
�1

�MPa�
�2

�MPa�
�3

�MPa�

This paper Sn37Pb 0.125 1.88 37.6 41.3 62.2
Sn3.5Ag 0.078 3.35 35.0 40.2 56.9

Sn3.0Ag0.5Cu 0.065 4.30 45.0 50.4 62.7

Wises et al. �30� Sn37Pb 0.07 0.3 21 41 600
Sn3.5Ag 0.1 0.4 41 64 700

Sn3.0Ag0.5Cu 0.14 0.4 57.4 80 2500

Table 4 Material constants of the Johnson–Cook models for the three solders derived from
the compressive tests

A
�MPa�

B
�MPa� C n m

Tm
�K�

Sn37Pb 35 119 0.0369 0.57 0.8 456
Sn3.5Ag 29 243 0.0956 0.70 0.8 494
Sn3.0Ag0.5Cu 38 275 0.0713 0.71 0.7 490

Fig. 8 Compressive true stress-strain curves of Sn37Pb at
strain rates of „a… 600 s−1, „b… 1200 s−1, and „c… 2200 s−1
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6 Drop Impact Simulation of a Board Level Package

6.1 Models of Board Level Package Under the Drop
Impact. Some fundamental models of a board level package un-
der the JEDEC standard drop impact can be found in Refs.
�40–42�. For clarity, a brief description of the drop impact test is
presented here. A typical setup of the board level drop impact test
recommended by the JEDEC �6� is shown in Fig. 14�a�. During
the test, an assembly consisting of a PCB and a component is
mounted onto a metal base via screw bolts. Then the entire assem-
bly is subjected to free fall along guide rods from a prescribed
height, and the metal base impacts onto a rigid foundation and an
impact loading is produced. A prescribed half-sine acceleration
pulse can be achieved by manipulating the drop height and the
dimension or materials of cushion pads. Since the stiffness of the
metal base is exceedingly greater than that of the PCB, the half-
sine acceleration pulse resulting from the impact predominantly
transmits to the PCB via the metal base and the screw bolts with
little distortion. Therefore, the board level drop impact test can be
modeled as that the PCB is alone subjected to the half-sine accel-
eration pulse at points of mounting to the screw bolts, as shown in
Fig. 14�b�. Here G�t� represents the acceleration pulse. This ap-
proach was called the input-G method proposed by Tee et al. �43�.
Since the PCB has much larger warpage in its length direction
than in the width direction, the PCB and the component can be
modeled as two 3D beams with width neither more nor less than

the diameter of the solder joint. Furthermore, the symmetry of the
problem allows that only the right half of the structure in Fig.
14�b� is modeled. Thus the final model consists of solder joints
and two cantilever beams, as shown in Fig. 14�c�. Its finite ele-
ment model is presented in Fig. 15.

6.2 Model Parameters. In current analysis, a component in a
size of 6�0.5�1.02 mm3 was interconnected to a 50�0.5
�1 mm3 PCB through Sn3.0Ag0.5Cu solder joints. The compo-
nent contains a bare silicon die in a size of 3�0.5�0.26 mm3. A
solder mask, substrate and Cu pads were taken into account. The
diameter, standoff, and pitch of the solder joint were 0.35 mm,
0.28 mm, and 0.5 mm, respectively. Pad designs are solder mask
define �SMD� on the component side and non solder mask define
�NSMD� on the PCB side. Young’s modulus E, Poisson’s ratio �,
and density � of various materials used in the finite element model
are listed in Table 5.

The element type was C3D8R in the ABAQUS �38�, and there
were 22,052 elements and 26,258 nodes totally. The drop impact
test condition H defined by the JEDEC �6� was used, which is
characterized by a half-sine impact acceleration pulse with a peak
of 2900 G and a time duration of 0.3 ms.

6.3 Simulation Results and Discussions. In order to show
the influence of material models on behaviors of solder joints,
elastic, elastic-plastic, and strain rate-dependent Johnson–Cook

Fig. 9 Tensile true stress-strain curves of Sn37Pb at strain
rates of „a… 600 s−1, „b… 1200 s−1, and „c… 1800 s−1

Fig. 10 Compressive true stress-strain curves of Sn3.5Ag at
strain rates of „a… 600 s−1, „b… 1200 s−1, and „c… 2200 s−1
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models were used in the analysis, respectively. The elastic-plastic
model and the Johnson–Cook constitutive model of the
Sn3.0Ag0.5Cu solder defined by Tables 3 and 4 were used.

Numerical results indicate that the maximum strain rates in the
solder joints computed by the elastic, the elastic-plastic, and the
Johnson–Cook model are 136 s−1, 1782 s−1, and 922 s−1, re-
spectively. This result supports the estimations made by Wang and
Yi �8� and Siviour et al. �9�. If plastic deformation is not consid-
ered, the strain rate is about 102 s−1, which is close to the estima-
tion made by Wong et al. �10�. Figure 16 shows the typical distri-
butions of the maximum principal stress and strain rate in a solder
joint at 0.42 ms, which were computed by the Johnson–Cook
model.

The peeling stress, which is the normal stress component in a
solder joint vertical to the PCB, is regarded as dominant stress
component leading to the failure of solder joints �44�. The maxi-
mum peeling stress occurs at the interface between solder joints
and the PCB in the most right solder joint �the critical solder
joint�. Histories of the peeling stresses, true strains, and equivalent
plastic strains computed by the three material models at critical
point in the critical solder joint are plotted in Fig. 17. It indicates
that the elastic model predicts the greatest peeling stress and the
least strain, while the elastic-plastic model predicts the least stress
but the greatest strain. The Johnson–Cook model predicts the me-
dial results. This is reasonable because the strain rate effect is

included in the Johnson–Cook model. From Fig. 17�c�, the elastic-
plastic model predicts a four times greater equivalent plastic strain
than the Johnson–Cook model does. This overestimation will lead
to a wrong result when the equivalent plastic strain is used as a
damage index in reliability assessments.

7 Conclusions
The mechanical properties of Sn37Pb, Sn3.5Ag, and

Sn3.0Ag0.5Cu solders were investigated at high strain rates using
the split Hopkinson pressure and tensile bar testing techniques.
Based on the experimental data, constitutive models of the three
solder alloys with and without the strain rate effect were derived,
and the models were applied to predict behaviors of solder joints
in a board level electronic package subjected to a standard drop
impact load. Some conclusions can be drawn as follows:

�1� The two lead-free solders are more sensitive to strain rate
than the lead-based solder does. At high strain rates, the
tensile strengths of the lead-free solders are about 1.5 times
greater than that of the Sn37Pb solder, and their ductility
are significantly greater than that of the Sn37Pb.

�2� The great ductility and enhanced bulk strength of lead-free
solders in high strain rate deformation make the solder
joint-PCB interface vulnerable, and possibly lead to the mi-

Fig. 11 Tensile true stress-strain curves of Sn3.5Ag at strain
rates of „a… 600 s−1, „b… 1200 s−1, and „c… 1800 s−1

Fig. 12 Compressive true stress-strain curves of
Sn3.0Ag0.5Cu at strain rates of „a… 600 s−1, „b… 1200 s−1, and
„c… 2200 s−1
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gration of the main failure mode from bulk fracturing in
lead-based solder joints to interface cracking in lead-free
solder joints. In order to investigate the interfacial failure of
lead-free solder joints under a drop impact load, the strain

rate effect and rate-dependent material models of lead-free
solders are indispensable.

�3� Numerical results show that under the drop impact condi-
tion H defined by the JEDEC solder joints experience a
strain rate in a level of 103 s−1; therefore, it is imperative to
take the strain rate effect into account in the drop impact
analysis. The presented rate-dependent Johnson–Cook ma-
terial models of lead-free solders can predict more realistic
stresses and strains than rate-independent elastic-plastic
models do, and they are applicable to simulate behaviors of
lead-free solder joints in high strain rate deformation such
as in the drop impact.
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Inelastic Analysis of Fracture
Propagation in Distal Radius
The focus of this paper is on the description of progressive fracture in distal radius in the
event of a fall onto an outstretched hand. The inception of fracture, which involves
formation of a macrocrack in the cortical tissue, is defined by invoking a macroscopic
failure criterion that accounts for inherent anisotropy of the material. The subsequent
propagation of damage is described by employing a homogenization procedure in which
the average properties of cortical tissue intercepted by a macrocrack are established. The
framework is verified by performing a series of nonlinear finite element analyses. In
particular, the experimental tests recently conducted by the authors and their colleagues
on a number of cadaver radii under boundary conditions leading to Colles’ fracture are
simulated, and the results are compared with the experimental outcome.
�DOI: 10.1115/1.3168595�

1 Introduction
The fracture of the distal radius is typically the earliest clinical

manifestation of osteoporosis �1,2� as the peak incidence occurs
some 15 years before that of hip fracture. Consequently, the iden-
tification of individuals at risk for radial fracture would permit
much earlier intervention to prevent irreversible bone loss, and
perhaps avoid the future more devastating fractures of the hip and
spine.

Currently, the most widely used technique for evaluation of the
risk of fracture in clinical practice involves the measurement of
bone mineral density �BMD�, determined with dual energy X-ray
absorptiometry �DXA�. In this case, the assessment of fracture
risk is based on the correlation between the baseline bone density
and subsequent occurrence of fractures as observed in gender and
race specified large groups of individuals followed over a number
of years. Apparently, the BMD value alone does not provide a
rigorous mechanical assessment; it only indicates the level of
probability that an individual will suffer a fracture.

The first approach aimed at incorporating the actual geometry
of a radius into fracture risk assessment was strictly experimental
and involved mechanical testing simulating the condition of a fall
onto an outstretched hand. This methodology was employed to
establish a correlation between clinical measurements of bone
mass with experimentally determined fracture load. It was noticed
that clinical measurements such as BMD and BMC are not suffi-
cient to explain variability of the data �3–5� and attention was
turned to morphological measurements such as cortical cross-
sectional area or moment of inertia �3,4,6,7�. Despite somewhat
encouraging results, the experimental approach alone is quite re-
strictive as the clinical measures that are correlated with the me-
chanical competence vary from study to study.

An alternative methodology, which was developed and imple-
mented more recently, involves numerical studies based on finite
element �FE� analyses. The latter incorporates the actual geom-
etry, material properties, and the specific boundary conditions cor-
responding to the considered event. In general, there are two al-
ternative approaches to the problem, viz. micromechanical and
continuum-level analysis. The simulations at the microlevel re-
quire generation of a micro-FE model from high resolution pe-
ripheral quantitative computed tomography �pQCT� images. In
this case, the FE mesh includes details of the trabecular architec-
ture �8,9� and, as a result, employs an excessive number of ele-

ments. In general, the procedures for creating the FE mesh are
similar at both micro- and macrolevels. The primary difference is
that, in the latter case, the in-plane spatial resolution of the images
is coarser and the reconstructed volume is divided into much
smaller number of elements. For both micro- and macrolevel ap-
proaches, the estimates of the fracture load can be considered
reliable only if the description of mechanical properties of the
bone tissue is adequate. In this context, most of the existing at-
tempts are questionable as they do not incorporate the effects of
inherent anisotropy of both strength and deformation characteris-
tics, and/or do not properly address the notion of localized defor-
mation.

In this study, the fracture process in a radius bone is investi-
gated based on a nonlinear FE analysis, which incorporates an
inelastic constitutive relation for the cortical bone tissue. The
work is an extension of the previous research as reported earlier
by Pietruszczak et al. �10�. The latter study involved a simplified
approach in which the critical load causing fracture was estimated
by examining the plastic admissibility of the predicted stress field.
In the present work, a more rigorous approach is followed, which
employs a homogenization technique for establishing the average
properties of cortical tissue intercepted by a macrocrack. To the
authors’ knowledge, this is the first attempt to examine the propa-
gation of fracture in the distal radius.

The primary objective of this work is to verify the predictive
abilities of the proposed mathematical framework against a series
of experimental tests recently conducted by the authors and their
colleagues �11�. The experiments involved testing of a number of
dry cadaver radii under the conditions leading to Colles’ fracture.
The structural tests were followed by a series of material tests on
samples of cortical tissue that were extracted from the fractured
radii. The mechanical testing was preceded with the clinical im-
aging of the bone specimens.

It has been recognized that for problems involving Colles’ frac-
ture, the best correlation between failure load and bone properties
can be found in the cortical area �4,6,7,12�. Therefore, the focus in
the mathematical formulation of the problem is on the description
of cortical tissue properties. In subsequent sections, the formula-
tion of the problem is first outlined, followed by a numerical
study. The numerical part includes some parametric studies on
idealized geometries that examine the influence of basic material
parameters. Subsequently, the simulations of experimental tests
are discussed, which address the issue of initiation and propaga-
tion of fracture in the distal radius.
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2 Methodology
As mentioned earlier, the mechanical competence of the radius

is primarily due to the presence of the cortical shell. In mechanical
terms, the cortical tissue may be considered as transversely iso-
tropic, with the preferred material axis coinciding with that of the
osteon system. The onset of Colles’ fracture is associated with the
tensile stress regime, and the bone material may be idealized as
brittle elastic �11�. In this case, two basic notions need to be dealt
with, namely the specification of conditions at failure and the
description of localized deformation.

2.1 Tensile Fracture Criterion for Cortical Bone. The
strength of the cortical tissue is significantly affected by the ori-
entation of the osteons relative to the loading direction. The ex-
perimental evidence indicates that the tensile strength in the lon-
gitudinal direction is nearly three times larger than that in the
transverse direction �13�. The variation in axial compressive
strength shows a similar trend, with the respective values being
significantly higher than those in the tension regime.

The fracture criterion employed in this work is analogous to
that given in Ref. �10�. In what follows, the main assumptions
embedded in the formulation are briefly reviewed. The consider-
ations are restricted to the tensile regime which, as mentioned
earlier, is of primary interest for problems involving the distal
radius fracture.

The criterion invokes an assumption that the failure occurs
when the normal component of the traction vector, acting on a
plane with the unit normal ni, reaches a critical value. Thus, the
failure function is defined as

F = tn�ni� − c�ni�, tn = �ijninj, c = co�1 + �ijninj� �1�

where tn is the normal stress, and c is the strength parameter.
According to Eq. �1�, the value of c is said to be orientation
dependent and the bias in its distribution is defined by employing
a symmetric traceless tensor �ij, whose eigenvectors coincide
with the principal material axes, while co represents the average
value of c.

The orientation of the fracture/localization plane can be deter-
mined by maximizing F with respect to orientation ni. Thus, the
conditions at failure are defined as

max
ni

F = max
ni

�tn�ni� − c�ni�� = 0 �2�

The solution procedure involves constructing a supplementary
function incorporating Lagrange multiplier �, that is

G = �kjnknj − co�1 + �kjnknj� − ��njnj − 1� �3�

The conditions for stationary value of this function lead to

�G

�ni
= 2��ijnj − co�ijnj� − 2��ijnj = 0, nini = 1 �4�

from which

�Bij − ��ij�nj = 0, Bij = �ij − co�ij �5�

Equation �5� defines an eigenvalue problem that can be solved to
specify the direction cosines ni. Clearly, if �ij =0 then the direc-
tion of the localization plane is coaxial with that of the maximum
tensile stress, which is consistent with the standard criterion for an
isotropic material. Note that the function c�ni� in Eq. �1� can be
augmented by introducing higher-order dyadic products of
�ijninj. This will allow incorporating more complex distributions
of tensile strength, if the latter is indeed evidenced by the experi-
mental data.

The fracture criterion �2� was verified experimentally in the
work of Gdela et al. �11�. It has been demonstrated that the func-
tional form �1� can adequately describe the directional dependence
of both tensile strength and orientation of the localization plane.

2.2 Description of Localized Deformation. The notion of an
elastic-brittle material implies that when the fracture criterion �2�
is met a localized deformation takes place associated with the
formation of macrocracks. The localization commences on a plane
for which max F=0 and the direction of macrocrack is identified
with that of the critical plane.

In order to define the mechanical response, consider a represen-
tative volume of the material intercepted by a set of weakness
planes �macrocracks� of spacing l. Refer the geometry of a typical
unit cell to the frame of reference x̄i, such that x̄2-axis is normal to
the interface, as shown in Fig. 1. The constitutive relations for the
bone tissue and the weakness planes take the form

�̇̄ij = Cijkl�̇̄kl; ṫ̄i = kij�v j� �6�

In the equation above, �̄ij , �̄ij are the local microstress/strain ten-
sors, t̄i is the traction at the interface, �v j� is the velocity discon-
tinuity, and kij defines the mechanical properties along the weak-
ness plane. Note that Cijkl is an elastic transversely-isotropic
operator, which may be formally defined as

Cijkl = a1�ij�kl + a2��i� j�kl + �ij�k�l� + a3�ki�lj + a4�i� j�k�l

+ a5��i�k�lj + �k� j�li + �i�l�kj + �l� j�ik� �7�

where a’s are material constants and �i is a unit vector which
specifies the preferred material direction. At the same time, kij is
an elastoplastic operator, which is defined later in this section.

Following the framework of the homogenization approach
�14,15� the velocity field within the unit cell can be expressed as

vi = �̇ijx̄ j + v̄i�x̄2� �8�

where �ij is the macrostrain tensor, and vi is a discontinuous pe-
riodic field with the period of l. The microstrain rate �̇̄ij, corre-
sponding to Eq. �8�, is defined as

�̇̄ij = �̇ij + 1/2� � v̄i

� x̄2

�2j +
� v̄ j

� x̄2

�2i� �9�

Substituting Eq. �9� in the first equation in Eq. �6� yields, after
some transformations

�̇̄ij = Cijkl�̇kl + Cijk2
� v̄k

� x̄2

�10�

The stress field �̄ij is a self-equilibrated one, so that

�̇̄ij,j = 0 ⇒ Ci2k2
�2v̄k

� x̄2
2 = 0 �11�

Since det Ci2k2�0, the latter equality implies

Fig. 1 Representative volume of cortical tissue intercepted by
weakness planes
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�2vi

� x̄2
2 = 0 ⇒ v̄i = Aix̄2; �vi� = − Ail �12�

where Ai=constant. Imposing now the traction continuity require-

ment �̇̄2j = ṫ̄ j, and utilizing Eq. �10� together with Eqs. �6� and
�12�, yields

�̇̄2j = ṫ̄ j ⇒ C2jkl�̇kl + C2jk2
� v̄k

� x̄2

= − kjkAkl �13�

from which

Ak = − �C2kj2 + lkkj�−1C2jmn�̇mn �14�

The representation �14� can be substituted in relation �10� to de-
fine the average macroscopic behavior. Noting that for the veloc-
ity field �12� the microstress remains constant within the consid-
ered unit cell, i.e., �ij = ��̄ij�= �̄ij, one obtains

�̇ij = C̃ijpq�̇pq; C̃ijpq = Cijpq − Cijk2C2lpq�C2kl2 + lkkl�−1 �15�

Finally, the relation �15� can be referred to a global frame of
reference by employing a standard transformation rule, that is,

�̇ij
� = ��im� jn�pr�qsC̃mnrs��̇pq

� �16�

where �ij is the transformation tensor.
The above general solution, viz., Eq. �15�, pertains to the case

when the representative volume is intercepted by multiple discon-
tinuity planes. The same methodology, leading to the same repre-
sentation �Eq. �15��, may be implemented in the context of a do-
main intercepted by a single plane of weakness. In the latter case,
v̄i represents a discontinuous field whose components vanish on
external boundaries. Consequently, the parameter l is then inter-
preted as a “characteristic dimension,” associated with a given
representative volume V; e.g., l=	3V, if the latter is perceived as a
cuboidal cell.

The inverse relation to that of Eq. �15�, i.e., the one defining the
response in macrostress rates for an arbitrary macrostrain rate,
may be obtained by writing the constitutive relations �6� in the
form

�̇̄ij = Dijkl�̇̄kl; �vi� = Kijṫ̄ j �17�

where Dijkl=Cijkl
−1 and Kij =kij

−1. Incorporating now the continuity

requirement ṫ̄ j = �̇̄2j = �̇̄ij�2i, one can write

�vi� = Kijṫ̄ j = Kij�̇̄pj�2p = − Ail ⇒ Ai = − l−1Kiq�̇̄pq�2p �18�

The macrostrain rate field, Eq. �9�, can be expressed as

�̇ij = Dijkl�̇̄kl − 1/2�Ai�2j + Aj�2i� �19�

which upon substitution of Eq. �18�, together with the condition
�ij = ��̄ij�= �̄ij, yields

�̇ij = D̃ijkl�̇kl, D̃ijkl = Dijkl + 1/2l−1�Kil�2k�2j + Kjl�2k�2i�
�20�

It is noted that if the deformation process results predominantly
from sliding/separation along the interface, then the contribution
from the intact bone may be perceived as negligible. Thus, con-
sidering the intact material as rigid, i.e., taking Dijkl→0, yields

D̃ijkl 
 1/2l−1�Kil�2k�2j + Kjl�2k�2i� �21�

which provides a simple approximation, which may be suffi-
ciently accurate in practical implementation.

The above outlined general methodology for the description of
localized deformation is conceptually similar to that presented in
earlier work �see Ref. �16��. The mathematical approach, however,
is different. In order to complete the formulation, the functional
form of the compliance �Kij� and/or stiffness �kij� operators, viz.,

Eqs. �6� and �17�, needs to be specified. Consider the interface
behavior as elastoplastic strain softening, and define the yield
function on the localization plane ni as

f = titi − k2 = 0, k = k���, �̇ = �vi
p�ni �22�

where �vi
p� is the irreversible part of velocity discontinuity. Fol-

lowing the standard plasticity procedure, i.e., satisfying the con-
sistency condition

ḟ = 2tiṫi − 2kk��vi
p�ni = 0, �vi

p� = �̇
� f

�ti
�23�

and employing the additivity postulate in the constitutive relation

ṫi = kij
e ��v j� − �v j

p�� �24�
one obtains

�̇ = kij
e ti�v j�/2H; H = kij

e titj + kk�tini �25�

where kij
e is the elastic operator. Substituting now Eq. �25� in Eq.

�24� yields

ṫi = kij�v j�, kij = kij
e − kip

e kkj
e tktp/H �26�

The softening function may be assumed in a simple exponential
form

k = koe−�� ⇒ k� = − �k �27�

where ko defines the magnitude of the traction at the inception of
localization, and � is a material parameter.

The inverse relation to Eq. �26� is obtained by evaluating the
plastic multiplier directly from Eq. �23�, that is

�̇ = tiṫi/H1, H1 = 2kk�tini �28�
and substituting this representation in the additivity postulate

�vi� = Kij
e ṫj + �vi

p� ⇒ �vi� = Kijṫj, Kij = Kij
e + titj/H1 �29�

where Kij
e is the elastic compliance.

3 Numerical Analysis
The focal point of the work presented in this section is an

inelastic finite element analysis aimed at the prediction of me-
chanical competence of the radius bone in a fall onto an out-
stretched hand. Contemporary commercial finite element pack-
ages include, in general, the basic elastic and inelastic material
models. However, these models are based on classical continuum
mechanics that assumes homogeneity and continuity of the mate-
rial’s microstructure and independence of the material response of
the orientation of the coordinate system. The latter assumptions
are restrictive as they exclude the effects of anisotropy, as well as
those of localized deformation. Note that majority of available
finite element packages offer the option to include user-defined
material models in the analysis. This enables implementation of
more complicated frameworks for describing the mechanical be-
havior.

With respect to the modeling of strain localization, the classical
continuum formulations, such as plasticity or damage mechanics,
are known to suffer from sensitivity to finite element discretiza-
tion �17,18�. This drawback of local approaches has been ad-
dressed by introducing nonclassical frameworks. The best known
in this category are: micropolar �Cosserat� continuum theory, non-
local constitutive models, and gradient dependent material de-
scriptions �18�. The mathematical framework presented in Sec. 2.2
belongs to the class of local approaches; it takes into account the
effects of macrostructural heterogeneity via a homogenization
procedure that is applied within the volume that is associated with
each material point. The characteristic dimension l that is intro-
duced in this model is defined in terms of geometry of the con-
sidered representative volume. It should be noted that the present
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approach is, in fact, the only one that distinguishes between the
properties of interface and those of intact material.

The presentation in this section is structured as follows. First,
the issue of verification of the proposed framework is addressed.
Some parametric studies are conducted that include idealized ge-
ometries and are focused on examining the influence of basic
material parameters. Subsequently, inelastic analyses simulating
the experimental tests conducted by Gdela et al. �11� are carried
out. The focus is on modeling of the load-displacement character-
istics as well as the fracture propagation pattern; the results are
compared with the experimental data.

3.1 Verification of the Framework. The mathematical
framework developed in Sec. 2 has been incorporated in the com-
mercial FE package Cosmos/M through the user-defined Nstar.exe
module. The key material parameters employed in the mathemati-
cal formulation are summarized in Table 1. The elastic response,
which was assumed to be transversely isotropic, requires specifi-
cation of five independent elastic constants. Verification of the
fracture criterion involves an eigenvalue problem �5�; the solution
to which gives the maximum value of the fracture function �1� and
the direction of the critical plane ni. This part of analysis requires
specification of strength parameters involved in representation �1�,
i.e., tensile strength in the preferred and the transverse directions
c0 and c90, respectively.

After the onset of localization, the inelastic response involves
determination of the stiffness operator kij for the interface. The
latter is computed via Eq. �26�. The analysis requires the specifi-
cation of additional material parameters, viz., elastic properties of
the interface �kN, kT, i.e., normal and tangential stiffness, respec-
tively� and the softening parameter �. In general, the elastic con-
stants for the interface should be large enough to ensure predomi-

nantly plastic behavior. The parameter � involved in Eq. �27�
defines the rate of the strain softening and should assume a value
that is representative of an elastic-brittle response. Here, no ex-
perimental information is available, so that the influence of this
parameter is examined through some parametric studies. The key
material parameters employed in all verification examples given
here are based on average values provided in the literature and are
listed in Table 1.

The first verification problem involved an inelastic FE analysis
of a cantilever subjected to in-plane bending. In this part, the
influence of the softening parameter on the ultimate load, the
mesh objectivity, and the ability of the framework to model the
fracture propagation process were examined. The finite element
models of the analyzed structure are shown in Figs. 2�a� and 2�b�.
The cylindrical beam was 200 mm in length, with a hollow cross
section of 20 mm in diameter and 2 mm wall thickness. The
preferred material direction was assumed to be coaxial with the
longitudinal axis.

In the primary simulation, the structure was discretized with
8-noded solid elements; 48 elements along the circumferential and
2 in the radial direction. A higher mesh density was assigned in
the region adjacent to the support, where the fracture was ex-
pected to initiate. The model consisted of a total of 4992 elements.
The cantilever was fixed in a circular embedment that was as-
signed isotropic elastic properties of steel. All nodes along the
circumferential surface of the embedment were restrained against
translational degrees of freedom. The loading consisted of vertical
displacements applied uniformly over the cross-sectional area at
the free end. Parametric studies were conducted for the softening
parameter � in the range between 20 mm−1 and 100 mm−1.

Table 1 Material parameters adopted in verification examples

Parameters of the model Description

Ex=17,400 MPa Young’s modulus in preferred direction
Ey =Ez=9600 MPa Young’s moduli in transverse directions
	yz=0.2 Poisson’s ratio in plane of isotropy
	xz=	xz=0.22 Poisson’s ratios in planes parallel to the preferred direction
Gxy =Gxz=3500 MPa Shear moduli in planes parallel to preferred direction
Gyz=Ey /2�1+	yz� �MPa� Shear modulus in plane of isotropy
c0=140 MPa Tensile strength in preferred direction
c90=50 MPa Tensile strength in transverse direction
� �1/mm�—variable Parameter that defines the rate of softening
kN=1
109 MPa /mm Stiffness of the interface in normal direction per unit area
kT=5
108 MPa /mm Stiffness of the interface in tangential direction per unit area

Fig. 2 FE model of cantilever; „a… primary mesh „4992 8-noded solid elements…
and „b… resized mesh „1440 8-noded solid elements…
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Figures 3–5 show the key results of this part of the parametric
study. The force-displacement curves given in Fig. 3 indicate a
strong dependency of the solution on the strain softening charac-
teristics. In particular, the rate of softening, as governed by the
parameter �, Eq. �27�, significantly affects the prediction of the
ultimate load. This is clearly evident for ��60 mm−1 when the
material displays a more ductile behavior. However, an increase in
the value of � beyond 60 mm−1, which is indicative of brittle
material, gives the solutions that are virtually invariant with re-
spect to �; the differences are of the order of experimental scatter.

Figure 4 illustrates the second aspect of this analysis; i.e., veri-
fication of the fracture mode. It is evident that the onset of fracture
occurs at the top fibers and the damaged zone progressively
propagates downwards. At the ultimate load, nearly half of the
cross section is fractured. The results are, in general, consistent
with the standard mechanics of material approach.

Finally, Fig. 5 illustrates the influence of mesh size on the pre-
dicted mechanical response. The results presented here correspond
to different values of the parameter �, and employ two different
meshes �Fig. 2�. The coarser mesh is uniform and incorporates
1440 elements; 36 along the circumference and 1 in the radial
direction. It is evident from these results that the prediction of
ultimate load is virtually unaffected by discretization. Some mesh

Fig. 3 Force-displacement characteristics for different values
of � „Note: Solid lines correspond to results of FE analysis;
dashed lines are approximations…

Fig. 4 Fracture propagation along the cross section adjacent to the support; �=20 mm−1

Fig. 5 Comparison of force-displacement characteristics for different mesh densities, i.e., original mesh „4992 elements…
and resized mesh „1440 elements…: „a… �=60 mm−1, „b… �=80 mm−1, and „c… �=100 mm−1
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sensitivity of the solution is observed only at advanced stages of
deformation when the response becomes unstable on the macros-
cale �Figs. 5�b� and 5�c��. This, however, is of little practical sig-
nificance as the fracture has already occurred.

The second verification problem examined here involved a ra-
dius bone, with idealized geometry �after Ref. �10��, subjected to
eccentric load. The primary objective was to study the damage
process and to asses if the predicted failure mechanism is repre-
sentative of Colles’ fracture.

The geometry is depicted in Fig. 6. The dimensions were cho-
sen based on standard CT images published in the literature. The
typical curvilinear features of the bone surface were modeled by a
piecewise continuous linear approximation. The spatial character-
istics were incorporated into Cosmos/M 2.95, and the volume of
the cortical shell was generated. Each volume segment was
meshed with eight-noded isoparametric elements; one along the
circumferential and two in the radial directions. The material triad
was assigned in such a way that for each element the preferred
axis remained parallel to the longitudinal direction of the external
surface of cortical shell at that location; the remaining two axes
were confined to the plane perpendicular to it. The model incor-
porated approximately 31,200 solid elements. The thickness of the
cortical shell was assumed to be within the range of 0.6 mm to 3
mm �Fig. 6�. The bone was assumed to be embedded at the
trimmed end and at the articular surface.

The loading consisted of applying uniform displacements dis-
tributed over the top of the steel plate �Fig. 7�. In a palmar view,
the displacements were applied toward the styloid and exhibited
15 deg deviation from the longitudinal direction of the shaft,
while the radial tilt chosen for the model was 20 deg. In a lateral
view, the displacements remained parallel to the longitudinal axis
as the model displayed no palmar tilt.

The material properties for the bone tissue were the same as
those listed in Table 1. The embedment was considered to be an
isotropic elastic material �E=3.4 GPa, �=0.34�. A parametric
study was conducted for the softening parameter ranging from
60 mm−1 to 100 mm−1.

The key results of the numerical simulations are presented in
Figs. 8–11. Figure 8 shows the force-displacement characteristics
obtained for the examined range of the softening parameter �.
Similarly as in the case of the cantilever, the ultimate strength
increases with a decrease in the value of �. For higher values
though, which are representative of the elastic-brittle material, the
changes are insignificant, i.e., of the order of experimental scatter.
Note that the dashed lines in Fig. 8 show an extrapolation of the

characteristics into post-failure regime. The purpose of this is to
emphasize that the response remains unstable after the ultimate
load is attained. Apparently, the approximation itself may not be
accurate.

Figures 9 and 10 show the progressive evolution of fracture that
corresponds to �=100 mm−1. In all these figures the damaged
zone is depicted in black. It is clear that the onset of fracture and
its propagation are both confined to the distal region of the radius

Fig. 6 The idealized FE geometry in comparison to X-ray im-
age of a radius bone

Fig. 7 3D visualization of the FE model of idealized bone
geometry

Fig. 8 Force-displacement characteristics

Fig. 9 Onset of fracture at 77% of ultimate load „Note: Black
color indicates the fractured region…

011009-6 / Vol. 77, JANUARY 2010 Transactions of the ASME

Downloaded 04 May 2010 to 171.66.16.45. Redistribution subject to ASME license or copyright; see http://www.asme.org/terms/Terms_Use.cfm



bone, which is representative of Colles’ fracture. Figure 11 shows
the fracture propagation in the critical cross section of the bone, as
indicated on the schematic picture attached to this figure. The
fracture is initiated at the medial site of the idealized geometry
and progresses along the circumference until the ultimate load is
reached, at which stage the entire cross section is fractured.

3.2 Simulations of Experimental Tests. The primary focus
here is on the inelastic analysis simulating the experimental tests
on the entire radii as conducted by Gdela et al. �11�. The analysis
was carried out for two specific bones labeled as No. 3 and No. 5
and the results of simulations have been compared with the ex-
perimental data in terms of both load-displacement characteristics
and the fracture mode.

An important and a quite demanding aspect of numerical simu-
lations of bone fracture is the generation of FE models of the
actual bone geometry. The procedure employed here involved pre-
liminary processing of the digital data obtained from CT scans for
each bone in order to extract the external and internal contours of
the cortical shell for consecutive cross sections. Subsequent pro-
cessing was aimed at the conversion of the irregular sets of points
for each cross section of the bone, obtained in preliminary pro-
cessing, into a structured grid of points. This was done by devel-
oping an algorithm, which generated a set of sequentially num-
bered points, with specific spatial location, that allowed for the
creation of hexahedral elements. In the next stage of the proce-
dure, a separate code was developed to generate a proper input file
enabling import of the structured grid into the Cosmos/M FE
package. Note that in case of simulations involving highly irregu-
lar geometry, the assignment of material directions for every ele-
ment becomes very complex. For the cortical bone tissue, it is
known that the preferred direction is coaxial with that of the os-
teons �see Ref. �19��, and that the average direction of the osteons

is parallel to the bone’s outer surface �20�. Thus, using the afore-
mentioned procedures, the finite element mesh for the entire bone
was generated in such a manner that the local coordinate system
for each element was automatically aligned with the principal ma-
terial triad, and the preferred axis was along the external bone
surface parallel to the longitudinal direction of the cortical shell.
The total number of isoparametric hexahedral elements for bones
No. 3 and 5 was 60,000 and 31,680, respectively. Figure 12 shows
the finite element discretization for bone No. 3, while Fig. 13
presents a 3D reconstruction of the FE geometry, together with the
images of actual bones.

The key elastic and strength parameters incorporated in the
simulations were consistent with those determined experimentally
by Gdela et al. �11�. The respective values for bones No. 3 and 5
are summarized in Tables 2 and 3. Note that some of the elastic
constants that were not explicitly determined were estimated
based on the typical values for cortical tissue reported in the lit-
erature �13,20�. Furthermore, based on the results of verification
problems discussed earlier, the value of the softening parameter
was fixed as �=90 mm−1, which again is representative of an
elastic-brittle material.

For each finite element model, the proximal and distal embed-
ments were incorporated in order to emulate the actual test con-
ditions. Figure 14 shows 3D visualizations of FE models for
bones No. 3 and 5, together with images of the actual samples

Fig. 11 Fracture propagation in critical cross section, as indi-
cated on the left panel. Results correspond to „a… 82%, „b… 89%,
and „c… 95% and 100% of ultimate load

Fig. 13 Actual bone image together with 3D visualization of FE
model of bone No. 3; bone in: anterior–posterior, lateral, and
posterior–anterior views, starting from the left

Fig. 10 Fractured region at 90% of ultimate load

Fig. 12 FE model of bone No. 3
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used in the experiments. The embedment was considered to be an
isotropic elastic material, and the elastic properties were those
representative of polymethylmethacrylate �PMMA� used in the
experiment �E=3.4 GPa, �=0.34�. The loading plate was also

modeled as an elastic material, with properties that were typical of
a mild steel �E=200 GPa, �=0.3�

The loading consisted of vertical displacements applied to the
steel plate at the same location as that in the experimental setup.
All degrees of freedom were restrained at the bottom surface of
the proximal cylindrical embedment.

The main results of numerical simulations are shown in Figs.
15–20. The focus here is on examining the propagation of fracture
and the assessment of the fracture load magnitude. Figure 15
shows the load-displacement characteristics obtained for bones
No. 3 and 5 together with the corresponding experimental curves.
In both cases, the numerical prediction of the fracture load is in
the range of 80–85% of the experimental value, which indicates a
fairly reasonable agreement. It is apparent that inclusion of the
trabecular bone would further improve the predictive abilities of
the model; this, however, is beyond the scope of this study.

The evolution of the fracture zone is shown in Figs. 16 and 17
and Figs. 18 and 19, for bones No. 3 and 5, respectively. Again, it
is evident that the location of the fracture and its extent are fairly
consistent with the experimental data, as evidenced by the actual
images of fractured samples.

Finally, some additional simulations were conducted for bone
No. 5, which employed a coarser mesh. In particular, the number
of elements in the radial direction was reduced from two to one,
thus reducing the total number of elements to 16,560. The load-
displacement characteristics for both mesh densities are shown at
Fig. 20. It is evident that, once again, the solution is virtually the
same as that employing a finer mesh.

Fig. 14 3D visualization of FE model of „a… bone No. 3 and „b…
bone No. 5, together with images of actual bone samples

Fig. 15 Load-displacement characteristics for bones No. 3 and 5

Table 2 Model parameters for bone No. 3

Parameters of the model Value

Ex �MPa� 21,100
Ey =Ez �MPa� 14,000
	yz 0.2
	xy =Gxz 0.22
Gxy =Gxz �MPa� 5000
Gyz �MPa� 5900
c0 �MPa� 171.5
c90 �MPa� 14.4
� �1/mm� 90
kN �MPa/mm� 1
109

kT �MPa/mm� 5
108

Table 3 Model parameters for bone No. 5

Parameters of the model Value

Ex �MPa� 27,500
Ey =Ez �MPa� 19,000
	yz 0.2
	xy =	xz 0.22
Gxy =Gxz �MPa� 5500
Gyz �MPa� 6000
c0 �MPa� 174.9
c90 �MPa� 22.4
� �1/mm� 90
kN �MPa/mm� 1
109

kT �MPa/mm� 5
108
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4 Final Remarks
Osteoporosis affects tens of millions of people in the world and

is recognized as the cause of 2.3 million fractures annually in
Europe and the USA alone �21�. These fractures, rather than the
disease itself, are responsible for the increase in morbidity and
mortality among the elderly, together with a decline in the quality
of their lives. In most cases, the actual fractures are the first clini-
cal manifestation of osteoporosis, which otherwise is an asymp-
tomatic disease. In this context, a reliable assessment of fracture
risk in individuals proves to be of significant importance.

The work presented here was focused on the mechanical analy-
sis of distal radius fracture known as Colles’ fracture. The meth-
odology employed for the assessment of mechanical competence
was based on an inelastic continuum-level finite element analysis
of the entire bone. Such an analysis takes into account the actual
bone geometry as well as the inherent anisotropy of both the de-
formation and strength characteristics. In the first part of this ar-
ticle, the mathematical formulation of the problem was outlined.
The primary focus was on the depiction of the onset of fracture
within the cortical tissue and the subsequent description of local-
ized deformation. Second part was focused on the finite element
analysis of the fracture propagation process. The implementation
of the mathematical formulation in the finite element software was

Fig. 16 Evolution of fracture zone for bone No. 3 „Note: Black color indicates
the fractured region…

Fig. 17 Fracture propagation in critical cross section; bone No. 3

Fig. 18 Evolution of fracture zone for bone No. 5 „Note: Black color indicates
the fractured region…

Fig. 19 Fracture propagation in critical cross section; bone No. 5

Fig. 20 Comparison of load-displacement characteristics of
bone No. 5 for different mesh densities
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discussed and a number of verification problems were solved.
Finally, inelastic finite element analyses were conducted simulat-
ing an actual experimental setup designed to produce a Colles’
fracture and the results were compared with the experimental data.

The mathematical framework for the description of localized
deformation in dried cortical tissue, as outlined in Sec. 2, ad-
dresses the key drawbacks of classical continuum formulations. In
particular, it takes into account the anisotropic/heterogeneous na-
ture of the fractured material. In addition, the basic material
functions/parameters are identifiable from standard experimental
tests, which is in contrast to other nonclassical frameworks. In the
context of FE analysis, the framework ensures the mesh objectiv-
ity of the results �Figs. 5 and 20� and enables an adequate simu-
lation of the process of fracture propagation. This again is in con-
trast to the standard numerical analyses of bone fracture, which
often employ the existing commercial codes that have virtually no
ability to properly account for material anisotropy and nonlinear-
ity.

The proposed methodology, when applied to the actual bone
geometry and boundary conditions, gave results that remained in a
quite reasonable qualitative and quantitative agreement with the
experimental data. The adopted approach was capable of captur-
ing the actual fracture mode. In addition, the predicted fracture
load was within 80–85% of the corresponding experimental value.
Thus, the proposed framework has a high potential in fracture risk
assessment; especially that it is individually oriented and compu-
tationally efficient. In order to further improve the predictive abili-
ties of this approach, the influence of the trabecular bone needs to
be examined. The latter requires an adequate mathematical formu-
lation addressing the issue of heterogeneity and anisotropy of the
trabecular network. This is a separate task that is quite complex
�see Refs. �22� and �23�� as the description of microstructure of
the trabecular bone still presents significant difficulties.
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Experimental Study of
Electromagnetic Effects on Solid
Copper Jets
In this paper we present a study of the interaction between an electric current pulse and
a solid copper jet. Experiments were performed using a dedicated pulsed power supply
delivering a current pulse of such amplitude, rise time, and duration that the jet is
efficiently affected. The copper jet was created by using a shaped charge warhead. An
electrode configuration consisting of two aluminum plates with a separation distance of
150 mm was used. The discharge current pulse and the voltages at the capacitors and at
the electrodes were measured to obtain data on energy deposition in and the resistance of
the jet and electrode contact region. X-ray diagnostics were used to radiograph the jet,
and by analyzing the radiograph, the degree of disruption of the electrified jet could be
obtained. It was found that a current pulse with an amplitude of 200–250 kA and a rise
time of 16 �s could strongly enhance the natural fragmentation of the jet. In this case,
the initial electric energy was 100 kJ and about 90% of the electric energy was deposited
in the jet and electrodes. At the exit of the electrode region, the jet fragments formed rings
with a radial velocity of up to 200 m/s, depending on the initial electric energy in the
pulsed power supply. �DOI: 10.1115/1.3172251�

1 Introduction
When a high enough current is forced through a thin conductor,

the conductor will be heated, melted, and eventually evaporated.
If the deposition of electric energy is sufficiently fast, the conduc-
tor will explode electrically. The case is more complex if the
conductor is moving so that new and unheated conductor material
enters the active region where current is conducted. After the cur-
rent interaction, the conductor may particulate and the fragments
may transform into rings or thin disks. This is applied in an elec-
tric armor, where the current pulse is passed through a shaped
charge jet to disrupt it and prevent it from penetrating the object to
be protected. The principle of direct electrification of a solid cop-
per jet created by a shaped charge is well known and was pro-
posed by Walker �1� in the 1970s. In order to supply the current,
Walker used a magnetic flux compression generator, which con-
verts the chemical energy bond in explosives into electrical energy
in terms of a current pulse. With a number of switches the current
was diverted into the jet to affect it and demonstrate the principle.
However, it was not until the late 1980s that the pulsed power
technology had matured to a state where electric armor could
become a realistic alternative to conventional protection. Experi-
ments were reported by Pollock �2� in 1992 and an increasing
number of papers related to electric armor have been reported
since �3–14�. A major effort to boost the development of pulsed
power technologies is the Army Technology Objective �ATO� pro-
gram under U.S. Army. In parallel with research on the electric
armor system concept itself �15,16�, the program aims to improve
pulsed power components such as capacitors, solid state switches,
and diodes to meet the demands of a fieldable electric armor sys-
tem. By increasing the energy density of capacitors and the cur-
rent ratings of solid state components the more energy efficient
and compact the system will be �17–19�. Demonstrations of this
technology with live firings on vehicles fitted with electric armor

were reported by Defence Science and Technology Laboratory
�DSTL�, UK �20� in 2002 and by BAE Systems in 2005 �21�.

In this paper we present a study of the interaction between a
current pulse and a solid copper jet created by a shaped charge
warhead. Experiments were performed using a dedicated pulsed
power supply �PPS� delivering a current pulse of sufficient ampli-
tude, rise time, and duration to affect the jet efficiently. A medium
caliber shaped charge and an electrode configuration consisting of
two aluminum plates with a separation distance of 150 mm were
used in the experiments. The discharge current pulse and the volt-
ages across the capacitors and the electrodes were measured to
obtain data on energy deposition in, and the resistance of, the jet
and electrode contact region. X-ray diagnostics were used to ra-
diograph the jet, and hence the disruption process could be studied
and analyzed in relation to the energy deposition.

2 Current Interaction With Shaped Charge Jets

2.1 Electric Protection Concept. In its simplest design, the
jet disruption system consists of a capacitor bank that stores a
sufficient amount of energy, a transmission line to transfer the
energy, and a pair of electrodes placed between the shaped charge
and the protected objects. In addition a charge and dump circuit
and control units are required. The shaped charge jet bridges the
electrodes and the energy stored in the capacitors is released in the
form of a strong current pulse. The jet is heated by the current
until it is melted, vaporized, or disrupted by magnetic forces. The
electrodes could be placed some distance away from the protected
object, and hence allow for the disruption to develop until the jet
fragment has lost its penetrative capability. In a simple system the
electrodes are always charged, which may have implications in
terms of personnel safety or ambient conditions. In more ad-
vanced systems the pulsed power system could use solid state
diodes and switches �17,18�. Once a threat is detected the elec-
trodes are connected to the capacitors via the closing of the
switches. Diodes would prevent current and voltage reversals, and
hence more of the capacitor’s energy storage capability could be
used.
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2.2 Shaped Charge Jet Characteristics. A shaped charge
consists of a metallic liner, usually copper, in the shape of a cone
surrounded by high explosives �22� �Fig. 1�. When initiated the
explosive deforms the metal cone into a metallic jet, having a
velocity gradient �Fig. 2�. The tip of the jet reaches a velocity of
7–8 km/s while the tail of the jet has a velocity of about 2 km/s.
The mass of the jet depends on the diameter and wall thickness of
the metal liner but is usually several tens of grams for a medium
size warhead. A slug of lower velocity of about 0.5 km/s follows
the rear part of the jet, and has a much higher mass but lacks
penetrative capability. The shaped charge jet will stretch with time
up to some point when instabilities will cause a fragmentation of
the jet, which in turn, reduces the penetrative performance. The
disruption of the jet by a current pulse serves to reduce the pen-
etration of the jet to such an extent that the hull of an armored
vehicle can absorb the remainder of the penetrator. A simple ex-
pression for the penetration P of a jet segment with constant ve-
locity �22� is

P = l� � j

�T
�1�

where l is the length of the jet segment, and � j and �T are the mass
densities of the jet and target, respectively. As a steel target and
the copper jet have about the same mass density, the penetration
will be approximately the length of the jet segment. The effect of
the current interaction serves to increase the radial extension of a
jet fragment on expense of its length, i.e., disk formation, and
hence reduce the penetrative performance of the single fragment.
An alternative description is that the fragment is vaporized and the

effective density of the jet is decreased, reducing the penetration
capability.

2.3 Jet Disruption Mechanisms. The general jet disruption
mechanism is due to the current pulse, which enhances the devel-
opment of the natural instability of a shaped charge jet and tears a
fragment apart to something looking like a ring or a disk. There
are several suggested mechanisms responsible for this �3–11�.

2.3.1 Ohmic Heating. The jet will be heated by the current as
the jet passes through the electrode region. Since it takes a finite
time for the current to diffuse to the center of the jet and also to
diffuse out of it, and because this time is of the order of the
passage time, the jet surface will be heated more than the center. It
also implies that the effective resistance of a jet will be higher
than if the current had a homogeneous distribution. The mass of a
jet is typically several tens of grams and the jet requires several
kJ/g to melt and reach the vaporization temperature. As the heated
jet looses mechanical strength and the magnetic force is strongest
in the necks, the neck diameter is decreased, increasing the current
density until it reaches a critical level where an explosion or va-
porization of the necks can occur.

2.3.2 Magnetohydrodynamic Instabilities. Magnetohydrody-
namic instabilities will develop due to the magnetic field associ-
ated with the axial current if the current amplitude is high enough
during the time a jet segment is between the electrodes. Since the
jet has a velocity gradient with the highest velocity at the tip, the
required current amplitude will be lower for the slower parts of
the jet. The natural breakup of a jet is accelerated by these insta-
bilities.

2.3.3 Volume Disruption. During the passage of the elec-
trodes, the jet experiences magnetic forces compressing the jet
and preventing a radial expansion. As this compressing force dis-
appears outside the electrode region, the jet is relaxed and free to
expand radially, tearing the jet apart. The radial velocity is related
to the current amplitude when a jet segment leaves the electrode
region and the radius of the jet segment.

2.3.4 Disk Formation. The natural diameter variation along a
jet prior to the fragmentation may be enhanced by the magnetic
pressure, reducing the diameter of the neck and forcing the mate-
rial away from the neck in the axial directions. Hence between
two neighboring necks, the diameter of the jet will increase and
eventually forms a thin disk.

3 Experimental Setup

3.1 Pulsed Power Supply and Transmission Lines. A 400
kJ PPS was used in the experiments �23�. The PPS consists of
eight capacitors �22 kV, 50 kJ, 206 �F�, arranged in a network
with variable inductors between each pair of capacitors, according
to Fig. 3. The design enables a wide range of output pulse shapes
with minimal reassembly. The inductor values vary between
0.1 �H and 2 �H. For the system to deliver a square pulse, the

Fig. 1 Shaped charge with a conical metallic liner surrounded
by high explosives „HE…

Fig. 2 Formation of a shaped charge jet. The two top left pic-
tures show the shaped charge with its cylindrical casing vis-
ible, while the following pictures only show the metal liner and
its formation to a jet. Due to its velocity gradient the jet
stretches, accompanied by a decrease in diameter. The jet is
followed by the slug of much higher mass but with lower
velocity.

Fig. 3 The pulse forming network with four capacitor modules
Ci connected via the pulse shaping inductors Li. Lout is the in-
ductance between the capacitor bank and the transmission
line, LTrL is the inductance of the transmission line, LEl/SCJ is the
inductance of the electrodes and the jet, RSCJ is the resistance
of the jet, and V1, V2, and I1 are the voltage and current probes.
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variable inductors and the load should have similar inductance
values. The pulse discharge time T and system impedance Z in a
pulse forming network with N modules is determined by the mod-
ule capacitance Ci and inductance Li according to

T = 2N�LiCi �2�

Z =�Li

Ci
�3�

In the experiments the inductors had a value of 380 nH, and hence
the discharge time was 100 �s and the system impedance
30 m�. An increasing number of modules makes the pulse be-
come more square shaped with shorter rise and fall times. The
PPS is housed inside an ISO container and is remotely controlled
via an optical fiber link. The output pulse is transferred to the load
via a 4 m long and 0.6 m wide flat transmission line with low
inductance. The transmission line consists of three layers of alu-
minum �20 mm thick� with the hot line in between the two outer
return conductors �Fig. 4�. Two thin �0.6 mm� and insulated cop-
per sheets are used between the transmission line and the elec-
trode pack �with a distance of around 2 m�. The copper sheets are
easily exchanged after an experiment if required.

3.2 Electrodes. The electric armor pack consisted of two 5
mm thick aluminum plate electrodes. The distance between the
electrodes was 150 mm. The copper sheets used to connect the
aluminum plates to the transmission line were clamped between
the aluminum electrodes and thin glass fiber reinforced plastic
plates placed behind the front electrode and in front of the back
electrode. The glass fiber reinforced plastic plates served as a
protection from debris. The electrodes are denoted as electrodes 1
and 2 in the order the jet hits them. Electrode 2 is connected to the
high voltage terminal and electrode 1 to the grounded capacitor
casing.

3.3 Test Stand. The shaped charge was placed on a typical
test stand for shaped charge testing �Figs. 4 and 5�. A thick steel
plate prevents the shock wave and debris from hitting the elec-
trodes. A steel target made of square tiles was used to absorb the
residual jet. The target was positioned at a large distance behind
the back electrode of the armor pack to allow the jet to expand to
enable the X-ray radiographing.

3.4 Shaped Charge. The shaped charge warhead used had a
straight conical liner made of copper. The jet tip has a velocity of
7.3 km/s. In the experiments the shaped charge has been posi-
tioned on a predefined distance relative to electrode 1. For the

given electrode setting and experimental setup, the rear part of the
jet will leave the electrode region 100 �s after the tip hits elec-
trode 2 and closes the circuit.

3.5 Diagnostics. The PPS voltage and the voltage across the
armor electrodes were measured with two high voltage probes
�Tektronix P6015A�. The current was measured using a CWT
4000XB �Power Electronics Measurement Ltd., Nottingham, UK�,
which is a flexible probe suitable for the flat transmission line
used. All signals were transferred to the oscilloscopes via optical
fiber links. Flash X-ray tubes �105 kV� were used to radiograph
the jet �Fig. 6�. All registration equipment �oscilloscopes and flash
X-rays� was triggered by a signal from a pick-up probe inserted
between the layers of the transmission line. The probe is sensitive
to the time derivative of the magnetic field, which initially be-
comes large when the current starts to flow in the circuit. In the
experiment with no current, a trigger foil was mounted on the
second electrode and used for triggering.

4 Experimental Matrix
A series of experiments were performed to evaluate the effects

of current and energy on the jet disruption. The setting of the
pulsed power supply and of the electrode configuration was at an
inductance of 380 nH in the pulse forming inductors and an elec-
trode separation of 150 mm. The inductance of the transmission
line and electrodes with shaped charge jet was approximately 500

Fig. 4 The experimental setup with the shaped charge being fired vertically down through
the electrodes into the target. Flash X-ray tubes project a shadow of the jet onto the X-ray
film.

Fig. 5 Picture of the wooden test stand with a thick steel plate,
protecting the electrodes and transmission line from pressure
and shrapnel. The cylinder on top of the steel plate absorbs
most of the fragments from the shaped charge.
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nH. The effect of energy stored in the capacitors on the jet dis-
ruption was studied in a series of experiments, as given in Table 1.

5 Experimental Results and Analysis

5.1 Typical Recordings and Data Analysis. A typical cur-
rent trace from an experiment is shown in Fig. 7. The capacitors
were charged to 10.6 kV, corresponding to 96.3 kJ. The current
rise time �10–90% of the peak current� was 16 �s, and the full
width at half maximum �FWHM� value was 98 �s. The pulse
width was 129 �s, measured from the onset of the current until it
drops back down to 0 kA. Hence the current pulse is long enough
to affect the jet tail part with a velocity of 2.7 km/s. The voltage
traces measured at the capacitor bank terminal �probe V1 in Fig. 3�
and close to the load �probe V2 in Fig. 3� are shown in Fig. 8. The
capacitors are charged to 10.6 kV and at trigger, it drops instan-
taneously down to a level determined by the time derivative of the
current and the total inductance of the circuit over which the
probes measure. The �maximum� current time derivative is ap-
proximately 25 GA/s at the onset of discharge and is obtained
from the current signal. The inductance L of the circuit determines
current time derivative at the onset of discharge by the relation

di

dt
=

U

L
�4�

where U is the voltage at the time of the onset of discharge. The
inductance of the load �jet and electrodes� is estimated by multi-
plying the current time derivative �derived from current measure-
ment� with an inductance value such that the measured load volt-
age �by probe V2� and the LEl/SCJ·di /dt value agree at the time of
discharge. In this way the load inductance is estimated to about
340 nH. Similarly the total inductance of load and transmission
line can be obtained by fitting the �LTrL+LEl/SCJ� ·di /dt value to
the capacitor bank voltage �by probe V1� at the onset of discharge.
This gives a total inductance of 420 nH, i.e., the transmission line
can be attributed to 80 nH, which is a reasonable value. The
measured voltage consists of two components: The inductive and
the resistive voltage drop. The resistive component is obtained by
subtracting the inductive component from the measured total volt-
age. The impedance of the load is obtained by simply dividing the
measured voltage by the current. The load resistance is obtained
by dividing the calculated resistive voltage component by the cur-
rent. In this case the resistance varies between 20 m� and
25 m� during the current pulse, an average value of 22 m� in
the time interval of 10–120 �s �Fig. 9�. This resistance value
includes that of the electrodes, the jet, and the contact between the
electrodes and the jet. The total energy stored magnetically and
deposited in the load is obtained by integrating the product of the
measured voltage and the current. The resistively deposited en-
ergy is calculated by integrating the product of the resistive volt-

Fig. 6 The three flash X-ray tubes protected from shrapnel
and pressure by their aluminum casings

Table 1 Experimental matrix

Energy in capacitors
�kJ�

Electrode separation
�mm�

X-ray times
��s�

0 150 31, 81, 81
39 150 36, 86, 86
58 150 36, 86, 86
96 150 36, 86, 86
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Fig. 7 Measured current pulse in the 96 kJ experiment
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Fig. 8 Measured load voltage and capacitor bank output ter-
minal voltages in the 96 kJ experiment. The drop in voltages at
the time of trigger is due to the inductance distributed in the
system.
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Fig. 9 Impedance and resistance of the electrodes and jet. The
dashed line indicates the average resistance value of 21.6 mΩ.
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age component and the current. In Fig. 10 the total energy and the
resistive losses are shown. The dotted line marks the energy stored
�96.4 kJ� in the capacitors calculated from the measured capaci-
tance of 1.71 mF and the capacitor bank voltage of 10.6 kV. This
indicates that 90% of the energy is deposited in the jet and elec-
trodes during the interaction time.

5.2 Effects of Energy and Current on Jet Disruption. The
disruption of the jet was studied by using X-ray radiographs of the
jet between and after the electrodes, where the effect of electrifi-
cation begins to develop. For a given pulsed power supply setting,
electrode configuration, and shaped charge setup, the charging
voltage of the capacitor was varied, i.e., the stored energy. The
general shape of the current pulses in the different experiments is
the same, and the pulse lengths are identical. The amount of en-
ergy deposited in the jet and electrode region is 80–90% in all
experiments. Figure 11 shows the jet 31 �s or 36 �s after it has
made contact with electrode 2 for three different capacitor bank
energies �0 kJ, 39 kJ, and 96 kJ�. The jet disruption clearly in-

creases with energy and the disruption begins earlier. Figure 12
shows the jet 50 �s later. The jet disruption is also in this picture
evidently stronger for higher energies. The natural fragmentation
of a jet is enhanced by the current and the number of fragments
and rings agrees well with the number of fragments of a nonelec-
trified jet. Note that the rings are barely visible for the higher
energy due to the lower density of the copper vapor.

5.3 Radial Dispersion and Ring Formation. The radial dis-
persion and ring formation was observed in detail using flash
X-ray tubes. Flash X-ray pictures of the jet were taken at different
angles either simultaneously or at different times. Hence the dis-
ruption process could be recorded over time or the geometry of
the jet particles be obtained by simultaneous depiction from dif-
ferent angles. Figure 13 shows the same four jet fragments iden-
tified in three X-ray pictures taken at different times. The left
picture shows the jet fragments in the 58 kJ experiment at 36 �s.
The center and right picture shows the same fragments taken at
86 �s from different angles. The jet fragments are transformed
from cylinders into rings. The higher contrast along the circum-
ference of the ring implies a ring shape rather than a disk, but that
has to be investigated further. The ring formation process can be,
at least qualitatively, observed in a single X-ray picture of the
disturbed jet, where jet parts close to the electrodes are still cyl-
inders and become more and more disturbed toward the tip. By
measuring the diameter of jet fragments identified in the two
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Fig. 10 The energy deposition in jet and electrodes during the
interaction time

Fig. 11 X-ray pictures of jet disruption at different energies. From the top, 96 kJ, 39 kJ, and 0
kJ is stored in the capacitors. The pictures are taken 36 �s after contact is made by the tip with
electrode 2 „the right of the two shadowed areas…, except for the lower picture, which is taken
31 �s after contact. The jet tip has moved to a distance of 260 mm from electrode 2 after
36 �s.

Fig. 12 X-ray pictures of jet disruption at different energies. From the top, 96 kJ, 39 kJ, and 0
kJ is stored in the capacitors. The pictures are taken 86 �s after contact is made by the tip with
electrode 2, except for the lower picture, which is taken 81 �s after contact. The jet tip has
moved to a distance of 620 mm from electrode 2 after 86 �s.

Fig. 13 X-ray pictures of four jet fragments at 36 �s „left… and
86 �s „center and right… after the jet made contact with elec-
trode 2. The figure in the center depicts the same four frag-
ments as in the figure in the right but from a different angle.
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X-ray pictures taken at different times, the radial velocity can be
estimated. Since the rings are barely visible in the X-ray pictures,
the true extension of them is probably larger than reported here.
For such an analysis the X-ray pictures in the 96 kJ experiments
are used. Both axial and radial velocities are obtained and plotted
against each other in Fig. 14. There is a large spread in data but
the fragments with axial velocities between velocities of 5 km/s
and 6.6 km/s have radial velocities of approximately 200 m/s. In
Fig. 15 the radial velocity is plotted versus the current �in the 96
kJ experiment� through a segment leaving the electrode region.
There is a clear trend of increasing radial velocity with current.
Note that the data are for segments with axial velocities higher
than 5 km/s, interacting during the first 30 �s of the current
pulse, i.e., the time of the rising flank of the current, as compared
with Fig. 7. In the two X-ray pictures of the 96 kJ experiment
�Figs. 11 and 12�, the radial expansion is observed to start when a
segment exits the electrode region. By assuming that all the jet
segments in the 96 kJ experiment with axial velocities down to 3
km/s instantly receives a velocity of 200 m/s at exit of the elec-
trode region, a simple estimation of the radial dispersion can be
obtained and compared with the experiment. The radius of the jet
before radial expansion is assumed to be 1 mm. Figure 16 shows
the calculated radius of the jet segments versus the distance from
the shaped charge cone base, 86 �s after the tip makes contact
with the second electrode, i.e., the same time as in Fig. 12. The
X-ray picture of the jet in the 96 kJ experiment is resized ten
times in the radial direction and inserted into the graph. There is a
good agreement in radius along the jet axis and implies that the
radial velocity for the parts with axial velocities below 5 km/s is

also around 200 m/s. A similar calculation is performed for the 39
kJ experiment and with an assumed radial velocity of 130 m/s at
the exit of electrode 2 �Fig. 17�. In the 39 kJ experiment the jet
was slightly bent and a linear drift term was included in the en-
velope calculation. The agreement is good also for this calcula-
tion.

6 Conclusions
An experimental arrangement has been established, where the

interaction between a solid copper jet and a powerful electric cur-
rent can be studied. A current pulse with an amplitude of 200–250
kA and a rise time of 16 �s could strongly enhance the natural
fragmentation of the jet. In this case, the initial electric energy was
100 kJ and the electric power in the jet was above 1 GW. About
90% of the electric energy was deposited in the jet. This high
energy efficiency was achieved because the current pulse length
agreed well with the passage time of the jet and because the im-
pedance of the pulsed power supply was well matched with the
load �the electrodes and the jet�. At the exit of the electrode re-
gion, the jet fragments formed rings with a radial velocity of up to
200 m/s, depending on the initial electric energy in the pulsed
power supply. Due to the short interaction time between the cur-
rent and the tip of the jet, the radial velocity of the jet tip �vaxial
�6.6 km /s� was as low as below 50 m/s.
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Fig. 14 Radial velocity for dispersed fragments in the 96 kJ
experiments
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Fig. 15 Radial velocity of the dispersed fragments versus cur-
rent level through them at their exit from the electrode region in
the 96 kJ experiment

Fig. 16 The solid lines show an estimation of radius of the jet
86 �s after the tip made contact with the second electrode,
assuming an instant radial velocity of 200 m/s of a segment at
the exit of the electrode region „located at 0.4 m on the scale….
The estimation is made for jet segments with velocities of 3–7.3
km/s. The X-ray picture of the 96 kJ experiment has been
stretched in the radial direction.

Fig. 17 The X-ray picture of the 39 kJ experiment with the es-
timation of the radius of the jet, assuming an instant radial ve-
locity of 130 m/s of a segment at exit of the electrode region
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Scaling of Strength of
Metal-Composite Joints—Part I:
Experimental Investigation
Knowledge of the size effect on the strength of hybrid bimaterial joints of steel and fiber
composites is important for new designs of large lightweight ships, large fuel-efficient
aircrafts, and lightweight crashworthy automobiles. Three series of scaled geometrically
similar specimens of symmetric double-lap joints with a rather broad size range (1:12)
are manufactured. The specimens are tested to failure under tensile displacement-
controlled loading, and at rates that ensure the peak load to be reached within approxi-
mately the same time. Two series, in which the laminate is fiberglass G-10/FR4, are tested
at Northwestern University, and the third series, in which the laminate consists of NCT
301 carbon fibers, is tested at the University of Michigan. Except for the smallest speci-
mens in test series I, all the specimens fail by propagation of interface fracture initiating
at the bimaterial corner. All the specimens fail dynamically right after reaching the
maximum load. This observation confirms high brittleness of the interface failure. Thus,
it is not surprising that the experiments reveal a marked size effect, which leads to a 52%
reduction in nominal interface shear strength. As far as the inevitable scatter permits it to
see, the experimentally observed nominal strength values agree with the theoretical size
effect derived in Part II of this study, where the size exponent of the theoretical large-size
asymptotic power law is found to be �0.459 for series I and II, and �0.486 for series
III. �DOI: 10.1115/1.3172254�

1 Introduction
Hybrid structures consisting of metals and fiber composites of-

fer many advantages for the design of large lightweight ships �1�
and fuel-efficient aircrafts. Metal-composite joints are a crucial

element of such designs. Because of the cost of failure tests of
large structures, laboratory tests must, in many situations, be con-
ducted on a much reduced scale. Thus, it is essential to have a
correct method to extrapolate the results obtained from small
laboratory specimens to much larger structural parts.

For purely metallic structures, such extrapolation is relatively
easy, since there is no deterministic size effect and the statistical
size effect, which is relatively weak, is well understood. However,
fiber composites are quasibrittle materials, which were shown
�2–5� to exhibit, in general, a deterministic energetic size effect
�6–10�. This size effect is much stronger than the statistical size
effect observed in fatigue-embrittled metals.
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In fracture mechanics of bimaterial joints, significant advances
have already been made �11–16�. The same can be said of adhe-
sive layers between two dissimilar materials �17–20�. However,
the scaling of the strength of these joints does not seem to have
been studied.

One complication in fracture mechanics of these joints is that
the singularity exponent of the stress field at the tip of an interface
crack is a complex number. In linear elastic fracture mechanics
�LEFM�, a nonzero imaginary part implies an oscillating crack
opening profile with interpenetration of the opposite crack faces.
After protracted debates, two conclusions eventually emerged
�21,22�: First, the distance from crack tip over which LEFM pre-
dicts interpenetrations to occur is generally much smaller than the
size of the fracture process zone �FPZ�, which means that the
interpenetrations are outside the range of validity of the LEFM
solution. Second, in spite of the interpenetrations, the complex
singularity field does give the correct energy release rate of a
propagating interface crack �17,23,24�, which is what really mat-
ters.

Another complication in hybrid joints is that the fracture ini-
tiates from the stress singularity at a reentrant corner. The same
complication, of course, occurs for reentrant corners in homoge-
neous materials. For a finite corner angle, the real part of the
exponent of the corner tip stress singularity in bimaterial, as well
as homogeneous situations, is larger than − 1

2 . This implies the
energy release rate at the corner to vanish, and so it is impossible
to satisfy the energy balance for a sharp �LEFM� crack initiating
from the corner. The way around this problem is to recognize that
a finite FPZ must form at the corner first.

One way to approximate such an FPZ is to postulate an equiva-
lent LEFM crack at the corner �25,26�. Together with the crack tip
singularity, this introduces a pair of stress field singularities lo-
cated very close to each other. But then a rigorous LEFM analysis
becomes difficult and messy.

A better and more physical approach is to admit at the outset
that both singularities actually lie within the domain of one FPZ,
which envelops both the corner and crack tip. A realistic approxi-
mate way to deal with it is to consider that a cohesive crack with
a given softening stress-separation relation emanates from the cor-
ner. Combining the exact corner and crack tip singular fields with
the finite element analysis of cohesive fracture, Bažant and Yu
�27� presented an accurate solution of this problem for symmetri-
cally loaded corners of various angles in a homogeneous material,
and derived by means of asymptotic matching the law of size
effect in fracture at such corners �27�. However, for reentrant cor-
ners in bimaterial joints, the size effect appears to be unknown. To
determine it is the goal of this two-part study.

The first part of this study presents experimental evidence of
the size effect in hybrid joints. The second part, which follows,
deals with the analytical formulation of the size effect, based on
bimaterial interface fracture mechanics. Computational simulation
of the size effect in hybrid joints is planned for a subsequent
paper.

2 Choice of Test Specimens
Two types of specimen geometry and composition have been

investigated—one at Northwestern University and another at the
University of Michigan. The geometry of the double-lap metal-
composite joints tested is shown in Fig. 1.

In each hybrid joint, there are eight bimaterial corners: four
interior and four exterior. Based on the singularity exponent, the
interface crack should start at the interior ones. The test results
confirm it.

The nominal strength �N is a load parameter with the dimension
of stress, and is here defined as �N= Pmax /bD. Here, Pmax is the
maximum load �which must be the failure load if load control is
used�, b is the width of the joint �in the third dimension�, and D is
the characteristic size �or dimension� of the joint �any in-plane
dimension can be chosen as D since only the relative sizes mat-
ter�. For this study, D is the length of the interface.

2.1 Specimen Dimensions. The greater the size effect ratio
compared with the width of the scatter band, the lower is the
ambiguity in identifying the size effect. For the typical random
scatter in the testing of fiber composites, it is found that the size
range must be at least 1:8 to produce a sufficient size effect range,
and thus achieve unambiguous test results with a small enough
error �8,28,10�.

To avoid manufacturing specimens of variable sizes, which is
normally more costly, some researchers tried to exploit the LEFM
energy release rate function g��� to deduce the size effect indi-
rectly from specimens of one maximum cross section dimension,
but different in shape or different in notch depth. Unfortunately,
this method is fraught by large statistical error because the range
of the so-called brittleness number �8,10� achievable by varying
the geometry at constant maximum size is too limited �29�.

Two series of geometrically similar specimens using the same
type of laminate were manufactured and tested at Northwestern
University �see Figs. 2�a� and 2�b��. A third series with a slightly
different geometry was manufactured and tested at the University
of Michigan to explore the size effect for a different type of lami-
nate �see Fig. 2�c��.

In the first two test series, the steel blocks at each end are
enlarged to accommodate the connectors of the steel chain
through which the tensile load is applied. For the third test series,
an additional 38.1 mm length is added to the steel bars at both
ends so that wedge grips can be used for loading. Except for the
aforementioned support parts, all the specimens within each test
series are geometrically similar �which means the dimensions of
D, Ds, Lc, Ls, t, and s have the same ratios for all the sizes�. Such
scaling makes detection and calibration of the size effect particu-
larly easy because the material failure criteria expressed solely in
terms of stresses and strains predict no size effect, i.e., the same
with the nominal strength �N, regardless of the specimen size
�6–9�.

The specimens of series I and II were loaded in tension through
chains at both ends to ensure that the tension resultant is centric.
However, the specimens of series III were fixed at both ends
against rotation and loaded at both ends by wedge grips. In gen-
eral, such end fixtures could lead to tensile force eccentricity.
However, thanks to careful attention to the alignment of end sup-
ports, the strain gauges on the opposite sides of the specimen gave
nearly identical readings. This confirms that the resultant was
centric.

The size ratios have been selected as 1:4:12 for series I and II,
and 1:3:9:12 for test series III, both of which suffice to meet the
aforementioned required breadth of the size range. There are three
specimens in series I, and nine specimens in each of series II and
III. In test series I there is thus only one specimen for each char-
acteristic size D. In test series II there are three for each size, and
in series III there are three for the two larger sizes, two for the
smaller size, and one for the smallest size. The specimen dimen-
sions in all the series are listed in Table 1. In series I, the smallest
specimen was found to fail by tensile fracture of the laminate
rather than by shear fracture along the interface, and to avoid it,

Fig. 1 Geometry of double-lap hybrid joint
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the relative laminate thickness in series II has been doubled. The
other dimensions for series I and II are the same; the width b
=20 mm in series I and II, and b=25.4 mm in series III. The
optimal selection of Ds, s, Lc, and Ls was determined by finite

element simulation �30� in order to ensure that: �1� the singular
stress fields introduced by bimaterial corners would not apprecia-
bly interfere with each other, and that �2� the steel block would
still be in the elastic range when the hybrid joint fails.

Fig. 2 Specimens of „a… test series I, „b… test series II, and „c… test series
III
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2.2 Properties of Composites. The metal and the laminate
are the same for series I and II. The metallic part is made of 1018
cold rolled steel having elastic modulus E=200 GPa and Pois-
son’s ratio �=0.3. The composites of the hybrid joint are
fiberglass-epoxy laminates �G-10/FR4 Epoxy Grade procured
from McMaster-Carr, Inc.�. The G-10/FR4 Garolite, manufactured
by continuous weaving, is a glass-cloth laminate with epoxy resin
binder. Although excellent tensile strength and high impact resis-
tance is expected for the G-10/FR4 Garolite, the supplier does not
provide precise information about its material properties, which
are essential for theoretical analysis and numerical simulation. To
determine these properties for series I and II, three types of test
are carried out.

�1� The uniaxial tensile test is used to obtain the in-plane
Young’s modulus E11 and Poisson’s ratio �13. Among dif-
ferent standard tensile test methods for composite materi-
als, the Composites Research Advisory Group �GRAG�
method 302, used to test axially orthotropic woven fiber-
reinforced laminates �31�, is selected. Accordingly, three
specimens of length L=260 mm, width W=20 mm, thick-
ness t=1.588 mm, and tab length Lt=50 mm are cut from
one and the same G-10/FR4 Garolite sheet �see Fig. 3�. To
measure the longitudinal and transverse strains, a strain
gauge is glued at the center to each specimen.

�2� The uniaxial compressive test is used to obtain the through-
thickness Young’s modulus E22 and Poisson’s ratio �21. In
contrast to the in-plane elastic properties and transverse
shear modulus G12, there exists no recognized national or
international standard for measuring E22 and �21. The rea-
son seems to be partly that strain and stress gradients are
introduced by fabrication of thick sections �32�, and partly

that the through-thickness properties are dominated by the
polymer matrix, which is isotropic. For the compressive
test, three laminate prisms, with dimensions of 35�15
�15 mm3, are cut from the same G-10/FR4 Garolite block
and then bonded to a 50�35�35 mm3 steel block at each
end �see Fig. 3�. The strains of two gauges, glued at the
opposite sides of each specimen, are averaged to eliminate
a possible effect of compression eccentricity.

�3� The Iosipescu V-notched beam test is used to obtain the
through-thickness shear modulus G21. Three flat rectangu-
lar specimens with dimensions 76�19.05�4 mm3 are
made, and two 90 deg angle notches, with faces oriented at
�45 deg to the longitudinal axis, are cut to the depth of
3.81 mm at the center of both edges �see Fig. 3�. Biaxial
strain gauges are bonded between the notches to measure
the shear strains.

The following in-plane and through-thickness material proper-
ties of G-10/FR4 Garolite are obtained: E11=30.0 GPa, v13
=0.17, E22=9.5 GPa, v21=0.20, and G12=3.0 GPa.

The adhesive, which glues the steel and G-10/FR4 Garolite
together, is the E-60HP metal-plastic bonder procured from
McMaster-Carr, Inc. Although E-60HP provides high shear
strength and peel resistance, its strength varies widely with the
surface treatment. In test series I, the steel surface is sandblasted
by extra coarse aggregate with glass beads �procured from Potters
Industries, Inc.�. In test series II, the steel surface is smooth.

In series III, the metallic part is the same as in series I and II.
The composites are made using Newport NCT301 carbon lami-
nates, which is a unidirectional tape laminate with an epoxy resin
matrix, and the adhesive is NB1101 0.030 psf epoxy film adhe-

Table 1 Dimensions of specimens

Specimen
s

�mm�
Ls

�mm�
Lc

�mm�
Ds

�mm�
t

�mm�
D

�mm�

I-S-1 2.5 2.5 22.5 5 0.794 10
I-M-1 10 10 90 20 3.175 40
I-L-1 30 30 270 60 9.525 120
II-S-1,2,3 2.5 2.5 22.5 5 1.588 10
II-M-1,2,3 10 10 90 20 6.35 40
II-L-1,2,3 30 30 270 60 19.05 120
III-SS-1 3.175 6.35 15.875 1.5875 0.2413 6.35
III-S-1,2 9.525 19.05 47.625 4.7625 0.7366 19.05
III-M-1,2,3 28.575 57.15 142.875 14.2875 2.1844 57.15
III-L-1,2,3 38.1 76.2 190.5 19.05 2.9718 76.2

I: test series I; II: test series II; III: test series III.

Fig. 3 Tests giving basic material properties of laminates: „a… tensile test, „b… through-thickness compressive
test, and „c… V-notched beam test
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sive. Both laminates and adhesives are produced by Newport Ad-
hesives and Composites, Inc. According to the material data sheet,
the properties for the uniaxial composites are: E11=125.5 GPa,
�12=�31=0.304, E22=9.0 GPa, and G12=5.6 GPa.

3 Size Effect Test
All the specimens are loaded under displacement control by a

Material Testing Systems, Inc. �MTS� servohydraulic testing sys-
tem. To ensure centric tensile load, a steel chain is connected to
the specimen by a cylindrical pin for series I and II; see Fig. 4�a�.

In test series III, the specimens are fixed at both ends by wedge
grips �Fig. 4�b��.

To isolate the rate dependence from the size effect, the fracture
process zone in specimens of different sizes should get fully de-
veloped within about the same time �28�. To meet this require-
ment, the loading rates �rates of the stroke of loading piston� are
chosen as 0.09 mm/min, 0.3 mm/min, and 0.9 mm/min for differ-
ent sizes in test series I. At these rates, the peak loads are reached
within 7–10 min. In test series II, the loading rates were 0.2 mm/
min, 0.5 mm/min, and 0.8 mm/min, and the peak loads were
reached within 5–6 min for all the sizes. In test series III, the
loading rates were 0.152 mm/min, 0.456 mm/min, 0.760 mm/min,
and 1.216 mm/min, and it took 3–6 min for all the specimens to
reach their peak loads. Unlike test series I, in which only the load
and stroke data were recorded, two linear variable displacement
transducer �LVDT� devices in series II �Fig. 4�a�� and four strain
gauges in series III �Fig. 4�b�� are installed at the opposite sides of
each specimen to measure the relative displacement or strains and
monitor a possible load eccentricity.

All the specimens failed in a brittle manner, which is docu-
mented by a sudden load drop after the specimens reached their
peak loads in the load-displacement plots �see Figs. 5�a�–5�c��.
The failure was dynamic and it occurred right after the peak load
had been reached, and in the largest specimens there was a loud
boom. All the specimens plotted in Figs. 5�b� and 5�c� exhibited
interfacial failure.

Beside the interfacial failure in medium and large size speci-
mens, another type of failure occurred in test series I. As shown in
Fig. 5�d�, the laminates of the smallest specimen failed by tensile
fracture across the laminate, and a crack along the metal-

Fig. 4 „a… Test setup at Northwestern University; „b… test setup
at the University of Michigan

Fig. 5 Load-displacement deformation curves „a… of test series I, „b… of test series II, „c… of test
series III, and „d… tensile fracture in laminates and shear fracture in bimaterial interface

Journal of Applied Mechanics JANUARY 2010, Vol. 77 / 011011-5

Downloaded 04 May 2010 to 171.66.16.45. Redistribution subject to ASME license or copyright; see http://www.asme.org/terms/Terms_Use.cfm



composite interface could not develop fully. Therefore, the failure
data for the smallest specimens are not comparable, and only the
data for the medium and largest specimens of series I can be used.
Obviously, the laminate thickness was too small in relation to the
interface length, and it was for this reason that the laminate thick-
ness was doubled for series II. Tensile fracture of the laminate
also occurred in several of the smaller specimens in test series III.
To identify the size effect exclusively on the interface shear
strength, these tests had to be ignored.

4 Interpretation of Experimental Results
As known from the theory of crack interactions and stability

�33�, the fractures propagate from all the four inner corners simul-
taneously in a stable manner while the load is increasing �except
for small differences due to inevitable random deviations from
perfect symmetry�. After the peak load, only one of the four in-
terface cracks can grow, while the others must unload. The obser-
vations from the tests support this kind of fracture evolution.

The recorded peak loads for all the specimens of series I, II, and
III are listed in Table 2 �only two peak loads are listed for the
largest specimens of series II, because the electronic equipment
malfunctioned in one test�. The corresponding plots of log �N
versus log D, as shown in Figs. 6 and 7, for all test series, display
a conspicuous size effect. For a fourfold size increase, the nominal
strength reduction is significant �52% in series II and 40% in
series III�. In series I, the �N value for the smallest specimen,
shown by a solid circle, cannot be used to calibrate the size effect
law because the failure occurred in the laminate rather than the
interface. Nevertheless, the �N value that would correspond to the
interface failure must be higher than the solid circle point, and
thus, series I, too, confirms a strong size effect.

The test data may be fitted by the size effect equation

�N = �0�1 + D/D0�� �1�
which is derived by asymptotic matching from fracture mechanics
in Part II of this study; �0, D0, and � are constants. D0 is called
the transitional size, which generally equals the material charac-

teristic length �8,10� times a geometry dependent factor obtainable
from the equivalent LEFM. Since the size range is not broad
enough and the scatter is not small enough to determine the ex-
ponent � purely experimentally, the values �=−0.459 for series I
and II, and �=−0.486 for series III, which give the asymptotic
slopes in logarithmic size effect plots, are derived theoretically in
Part II of this study �34�. They are seen to agree with the present
test data.

Using nonlinear statistical regression of the test data, one finds
�0=47.8 MPa and D0=20.77 mm for test series II, with �
=8.7%, and �0=98.0 MPa and D0=18.75 mm with �=10.5%
for series III �where � is the coefficient of variation of the regres-
sion errors, i.e., the standard error of regression divided by the
data mean�. When plotted in the double-logarithmic scales �Figs. 6
and 7�, the negative curvature documenting the transition from
quasiplastic behavior at small sizes to the LEFM for large sizes is
clearly apparent. For test series I, the data exist for only two sizes,
which is not statistically sufficient to fit a formula with two free
parameters. However, the large-size asymptote of slope �0.459
agrees with series I data �see Fig. 6�.

Figure 5�b� shows the load-displacement curves of series II
specimens, all of which failed due to fracture propagation in the
bimaterial interface. Note the sudden dynamic load drop after the
peak for all the sizes. This means that the post-peak equilibrium
path exhibits a snapback �i.e., runs to the left of the load drop�.
For all quasibrittle materials, the snapback takes place when the
large-size asymptote is approached closely enough. In the fracture
testing of concrete, the size above which the snapback occurs is
quite large. The fact that here the snapback occurs even for the
smallest specimen available means that, compared with other qua-
sibrittle materials such as concrete, the stress-separation diagram
of the cohesive interface crack must have a relatively steeper de-

Table 2 Recorded peak load

Specimen
P

�kN� Specimen
P

�kN� Specimen
P

�kN� Specimen
P

�kN�

I-S-1 6.00a I-M-1 28.09 I-L-1 46.49
II-S-1 8.19 II-M-1 21.85 II-L-1 –
II-S-2 7.89 II-M-2 27.90 II-L-2 50.01
II-S-3 8.51 II-M-3 20.57 II-L-3 45.40
III-SS-1 11.60 III-S-1 31.51 III-M-1 76.81 III-L-1 83.66
– – III-S-2 37.48 III-M-2 78.01 III-L-2 83.87
– – – – III-M-3 78.77 III-L-3 81.27

aFailed by tensile fracture of laminate.

Fig. 6 Measured nominal strength values compared with opti-
mum fit by size effect formula „solid curve…: „a… test series I and
„b… test series II

Fig. 7 Measured nominal strength of test series III compared
with optimum fit by size effect formula
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scent, and the FPZ must be narrower �8,28� �a similar conclusion
for fracture within laminates is also obtained in a previous study
�35��.

Before the peak load, the FPZ must grow simultaneously at all
the corners. But after the peak, the interface crack propagates
from one corner only. From which one? This is decided by the
corner singularity exponents. In the analytical study �34�, which
follows in Part II of this study, the stress singularity at the inner
bimaterial corners �the corners closer to the center of test speci-
men� is much stronger than that at the outer corners. Thus, the
crack should propagate from one of the four inner corners, or
generally from a corner at which the stiffer bar �in this case the
steel bar� terminates. This is confirmed by studying the damage
pattern of the laminates after the failure test �see Fig. 8�a��. The
formation of the cohesive interface fracture can be inferred from
the delamination marks, which form because the crack advances
in jumps. In the laminates of the small- and medium-size speci-
mens of series II, the delamination marks are seen only in the
region near the interior corners, while at the exterior corners, the
laminates are almost intact. The crack development in the bima-
terial interface is further documented by the laminate damage pat-
tern in the large specimens of series II �see the photo in Fig. 8�a��,
which shows the delamination to start from the inner corner and
then gradually grows through the whole interface. A similar evo-
lution of the delamination is also observed in series III.

For perfectly centric axial tensile loading, no bending moment
will develop until the fracture localizes into one of the four inter-
faces in the hybrid joint. This means that the LVDT or strain
gauges on opposite sides should give similar readings. The read-
ings were not identical, but their difference was small enough to
be attributed to inevitable errors in the alignment and material
fabrication.

Figure 8�b� shows, by solid and dashed lines, the evolution of
displacement differential with increasing load. Note that the small
displacement nonuniformity in the small-size specimens has al-
most no effect on the peak load. For the two large-size specimens,
one specimen displays a negligible displacement difference �a
long horizontal portion of the dashed line�, and the other shows
substantial nonuniform displacement �ascending dashed line�.
Nonetheless, the peak load difference between these two speci-
mens is insignificant compared with the coefficient of variation in
the nonlinear size effect regression, which is �=8.7%.

Unlike series I and II, the specimens of series III are loaded by
wedge grips at both ends. This is a support condition which might
introduce axial load eccentricity, with asymmetric stresses in the
opposite laminates. Nevertheless, according to the readings of the
four strain gauges bonded to the opposite sides of specimens, the
difference between the strains at opposite sides was negligible,

Fig. 8 „a… Delamination pattern observed in test series II, „b… differences in readings of opposite LVDT gauges
in test series II, and „c… strain differences at opposite specimen sides recorded in test series III
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with no appreciable effect on the nominal strength �see Fig. 8�c�,
which shows the typical strains due to bending moment for all the
sizes�.

5 Conclusions
The strength of metal-composite hybrid joints exhibits a strong

size effect. A fourfold increase in size may cause the nominal
strength to drop by more than 50%.

Experiments on geometrically similar specimens of different
sizes agree with the theoretical size effect law �34�, representing a
smooth transition from quasiplastic behavior in the theoretical
small-size limit to brittle �LEFM� behavior in the large-size limit.

Observation of the damage patterns in the failed specimens sup-
ports the theoretical prediction that the interface fracture should
initiate at the corner, at which the stiffer of the two joined bars
terminates.

The documented presence of size effect implies that the
strength of metal-composite hybrid joints cannot be calculated
from material models with failure criteria expressed solely in
terms of stress and strain, which have been typical of elastic,
plastic, and plastic-damage models. Rather, cohesive fracture me-
chanics or nonlocal damage mechanics, in which the failure crite-
rion involves some type of energy or material length, must be
used. Otherwise, the strength of large hybrid joints would be dan-
gerously overestimated.
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Scaling of Strength of
Metal-Composite Joints—Part II:
Interface Fracture Analysis
The effect of the size of hybrid metal-composite joint on its nominal strength, experimen-
tally demonstrated in the preceding paper (part I), is modeled mathematically. Fracture
initiation from a reentrant corner at the interface of a metallic bar and a fiber composite
laminate sheet is analyzed. The fracture process zone (or cohesive zone) at the corner is
approximated as an equivalent sharp crack according to the linear elastic fracture me-
chanics (LEFM). The asymptotic singular stress and displacement fields surrounding the
corner tip and the tip of an interface crack emanating from the corner tip are calculated
by means of complex potentials. The singularity exponents of both fields are generally
complex. Since the real part of the stress singularity exponent for the corner tip is not
� 1

2 , as required for finiteness of the energy flux into the tip, the interface crack propa-
gation criterion is based on the singular field of the interface crack considered to be
embedded in a more remote singular near-tip field of the corner from which, in turn, the
boundaries are remote. The large-size asymptotic size effect on the nominal strength of
the hybrid joint is derived from the LEFM considering the interface crack length to be
much smaller than the structure size. The deviation from LEFM due to finiteness of the
interface crack length, along with the small-size asymptotic condition of quasiplastic
strength, allows an approximate general size effect law for hybrid joints to be derived via
asymptotic matching. This law fits closely the experimental results reported in the pre-
ceding paper. Numerical validation according to the cohesive crack model is relegated to
a forthcoming paper. �DOI: 10.1115/1.3172152�

1 Introduction

The preceding first part of this study �1� presented experimental
evidence of a strong size effect on the strength of hybrid joints of
metal to polymer-fiber composite. The objective of the second part
is a mathematical analysis of the observed size effect.

In the past four decades, extensive analytical studies have been
devoted to the effect of structure size on the strength of structures
made of quasibrittle materials. These are brittle heterogeneous
materials, which include concrete, as the archetypical case, fiber
composites, sea ice, rocks, tough ceramics, stiff cohesive soils,
rigid foams, wood, paper, bone, etc., and all brittle materials on a
sufficiently small scale. In quasibrittle structures, the maximum
load is reached after a stable development of either a large crack,
or a large fracture process zone �FPZ� with distributed cracking.
The latter case leads to Type 1 energetic size effect, which transits
in the large-size limit to the Weibull statistical size effect. In the
former case, the pre-existing crack is approximately equivalent to
a notch, which leads to Type 2 energetic size effect �2,3�.

Williams’ solution �4� showed the dependence of the stress sin-
gularity exponent on the angle of a corner in a homogeneous
body. A general approximate size effect law was recently derived
for fracture emanating from a reentrant corner of arbitrary angle,
provided that the loading is symmetric and the body is homoge-
neous and isotropic �5�. This size effect formulation now needs to
be extended to a corner at the interface between two different
materials, one of which is orthotropic. Compared with a reentrant
corner in a homogeneous material, the analysis of a reentrant bi-

material corner is complicated by the fact that the stress singular-
ity exponent can be a complex number if the material mismatch is
severe enough.

The size effect is defined for geometrically similar structures
and represents the effect of structure size D �or characteristic di-
mension� on a load parameter of the dimension of stress. This
parameter is normally chosen as the nominal strength, which is
defined as �N= Pmax /bD, where Pmax=maximum load, b=width
of the structure �in the third dimension�, and D=characteristic
dimension, which may be chosen arbitrarily since only the ratio of
�N values matters. Here we chose D=interface length �Fig. 1�a��.
To avoid small secondary effects of the length of crack front edge
in the third dimension �stemming from a transition from plane
strain to plane stress along the edge�, it is better to consider two-
dimensional similarity, i.e., b=constant.

According to elasticity with strength limit, nonsoftening plas-
ticity or any theory in which the material failure criterion is char-
acterized solely in terms of stresses and strains, �N is independent
of structure size D �6,7,2� when geometrically similar structures
are compared. Any deviation from this classical situation is called
the size effect. The Weibull statistical size effect is negligible
when the FPZ or the crack length at failure is large, and also when
the crack can initiate at one point only �the corner�. Therefore, the
size effect in the joints is energetic �i.e., nonstatistical�, being
caused by the presence of material fracture energy Gf or material
characteristic length l0 in the material failure criterion.

Similar to the previous size effect analysis for many other qua-
sibrittle structures �5,2,3,8,9�, the size effect law will be asymp-
totically anchored at the large-size limit in linear elastic fracture
mechanics �LEFM�. The transition to small-size behavior and ex-
tension to various corner angles in the joint will be approximated
by asymptotic matching. For reentrant corners �or V-notches� in a
homogeneous body, this kind of approach has already been shown
to lead to good agreement with experiments �5�.
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2 Stress Singularity Exponent
In the double-lap joint considered here, both the structure and

the loading are symmetric. Before the peak load is attained, the
elastic field must be symmetric as well. Therefore, we analyze
only one quarter of the specimen �Fig. 1�b��. In this quarter, there
are two critical bimaterial corners where the corner geometry and
material mismatch cause singularity and stress concentration. To
identify the critical corner from which the crack propagates, the
stress singularity exponents must be calculated.

The stress singularity exponents for bimaterial wedges have
been extensively studied for isotropic materials �10,11�. For gen-
eral orthotropic-orthotropic interfaces or orthotropic-isotropic in-
terfaces, various numerical approaches, such as the finite differ-
ence method with eigenvalue analysis, and the finite element
iterative method, have been used to determine the singularity ex-
ponent and the surrounding asymptotic elastic field �12–14�.

In this study, an analytical approach using the complex field
method is adopted to calculate the singularity for bimaterial
wedges �shown in Fig. 2� �15�. Under plane loading condition, the
elastic field in each layer of material �including the displacements,
boundary tractions, and stress fields� may be represented by two
holomorphic functions f1�z1� and f2�z2�, where zj =x+� jy�j
=1,2�; � j is the root with positive imaginary part of the fourth
order equation

��4 + 2��1/2�2 + 1 = 0 �1�

Here �=s11 /s22 and �=0.5�2s12+s66��s11s22�−1/2; sij refers to the
elements of the general material compliance matrix, and sub-
scripts i and j refer to Cartesian coordinates xi�i=1,2�. When the
conditions of equilibrium and compatibility are imposed and the
singularity lies on the left side as the observer travels in the posi-
tive, or counterclockwise, direction of the arc, the corresponding
displacement, stress, and resultant forces on the arc can be repre-
sented by these two functions as follows �16�:

ui = 2 Re�
j=1

2

Aijf j�zj� �2�

�2i = 2 Re�
j=1

2

Lijf j��zj� �3�

�1i = − 2 Re�
j=1

2

Lij� j f j��zj� �4�

Ti = − 2 Re�
j=1

2

Lijf j�zj� �5�

where matrices A and L are defined as

A = � s11�1
2 + s12 s11�2

2 + s12

s21�1 + s22/�1 s22�2 + s22/�2
� �6�

L = �− �1 − �2

1 1
� �7�

Near the corner tip, the displacement field as a function of polar
coordinates �r ,�� �Fig. 2� may be assumed to be separable, and
the dependence on radial coordinate r to be a power law of some
exponent �, which can be either real or complex. The correspond-
ing stress field has a singular term proportional to r�−1. Hence, the
complex potentials near the bimaterial corner tip may be ex-
pressed, for both materials, as follows �15�:

fk�zk� = �kzk
� = �kr

��cos � + �k sin ��� �k = 1,2� �8�

To write these potentials in a more compact form, we define for
each material the vectors: �= ��1 ,�2�T, Z= �z1 ,0 ;0 ,z2�, and F
= �f1 , f2�T �where T denotes a transpose�. For each material, the
corresponding displacements and resultant forces can be written in
the matrix form as

u = �u1,u2�T = A · F + A · F = A · Z� · � + A · Z� · � �9�

− T = �− T1,− T2�T = L · F + L · F = L · Z� · � + L · Z� · �

�10�

where the overbar denotes the conjugate of a complex matrix.
Finally, one needs to impose the boundary conditions: a

traction-free exterior boundary ��=a ,−b :T=0�; and the continu-
ity of displacements and tractions at the interface between two
materials; �=0: TA=TB and uA=uB. This results in a system of
linear equations, with the matrix form

K���	 = �
YA 1 0 0

0 0 YB 1

1 1 − 1 − 1

BA − BA − BB − BB

	

�L��A

�L��A

�L��B

�L��B

� = 0 �11�

where 1= �1,0 ;0 ,1� and 0= �0,0 ;0 ,0�. Submatrices Yk and Bk

�where k=A, B=labels of materials A and B� are defined as

Yk = Lk�Zk��k��−�Lk
−1Lk�Zk��k���Lk

−1 �12�

Bk = iAkLk
−1 �13�

where i2=−1. It may be noted that the submatrix Yk defined above
cannot be directly applied to isotropic materials ��k= i� because
Lk is not invertible. However, one can calculate Yk by taking the
limit of �k→ i �Bk is well defined for isotropic materials� �15,17�.
The displacement singularity � must be solved from the condition
det�K�=0. To solve it numerically, it is the easiest to seek the
value of � for which the condition number of matrix K becomes
very large.

Fig. 1 Geometry of double-lap hybrid joint

Fig. 2 Geometry of bimaterial wedge
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Three test series have been reported in the preceding paper �1�.
The orthotropic elastic constants of the fiber composite used in
test series I and II are E1=30 GPa, E2=9.5 GPa, 	12=0.2, and
G12=3.0 GPa. The elastic constants of composite used in test
series III are E1=125.5 GPa, E2=9.0 GPa, 	12=0.3, and G12
=5.6 GPa. For steel, which is isotropic, E=200 GPa and 	=0.3.
Figure 3 shows in the complex plane the plot of det�K� for the
displacement singularity. For the joint used in test series I and II,
the displacement field at the left corner �at which the stiffer ma-
terial terminates� is found to exhibit singularities with exponents
being a pair of complex conjugates �=0.541
0.06i and, at the
right corner �at which the softer material terminates�, a real dis-
placement singularity �=0.781. For the joint used in test series III,
the displacement at the left corner exhibits two real displacement
singularities: �1=0.514 and �2=0.641, while at the right corner
there is a real displacement singularity with �=0.736. So, for all
the joints tested, the singularity at the left corner is much stronger
than it is at the right corner. Hence, the crack is expected to start
propagating from the left corner, which agrees with the experi-
mental observations �1�. The left corner is that which governs the
strength of the hybrid joint, and so the fracture needs to be inves-
tigated only for that corner.

3 Fracture of Bimaterial Corner and Size Effect Law
Asymptote

Various fracture criteria have been proposed to characterize the
crack initiation for general bimaterial corners �18–20�. Due to the
nature of mix-mode fracture at bimaterial corner, the use of stress
intensity factors as a fracture criterion generally necessitates an
empirical equation involving the stress intensity factors for differ-
ent modes �21�. As an empirical approach to certain situations,
such as bimaterial butt joints, one may simply use a critical value
of the stress intensity factor as a fracture criterion �22–24�. A more

general and effective approach is to consider the energy release
rate or the corresponding fracture energy as the failure criterion
�25�.

Consider a bimaterial corner with the strongest stress singular-
ity �=�
 i�. The corresponding near-tip stress field can be writ-
ten as

�ij = Re�Hri�
ij����r� �14�

where H is the stress intensity factor, and 
ij is the distribution of
stress. Both of them are complex, in general. Dimensional analy-
sis shows that H must have the form

H =
P

bD
D−��h��,���ei��−� ln D� �15�

where P is the applied load, b is the width of the joint, D is the
characteristic size of the joint �chosen as the interface length�,
h�� ,�� is the dimensionless complex stress intensity factor, � is
the effective loading angle �which combines the effects of loading
angle and boundary conditions�, and � is the phase angle of
h�� ,��.

For a general bimaterial wedge, the exponents of displacement
singularities can be either a pair of complex conjugates, a single
real number or two unequal real numbers depending on the degree
of material mismatch and the geometry. For the former two cases,
Eq. �14� represents the entire singular stress field �19,26�, while
for the latter case, Eq. �14� represents only the singular stress field
corresponding to the strongest stress singularity. The entire singu-
lar stress zone may be written as �ij =H1r�1
ij���+H2r�2�ij���.
For symmetric structures made of homogenous materials, �1 and
�2 correspond to the symmetric and antisymmetric modes of frac-
ture �Modes I and II� �the simplest example is the homogenous
reentrant corner analyzed in Ref. �5��. Depending on the loading,
it is possible that only one of them governs the entire stress field.

Because of the lack of symmetry of bimaterial joints, the sym-
metric and antisymmetric modes do not exist, and �1 and �2 al-
ways coexist. Many studies showed the importance of considering
both singularities to properly obtain the entire singular stress field
for a bimaterial joint �21,27,28�. Nevertheless, for the large-size
asymptotic size effect, only the singular stress field corresponding
to the strongest singularity is relevant. So, in what follows, only
the corner tip singular field corresponding to the strongest stress
singularity is considered.

Once the crack initiates from the corner tip, it will propagate
along the path that corresponds to the highest energy release rate
or the lowest fracture energy dissipation. The adhesive layer con-
necting the fiber composite and the steel is as thin as possible and
is generally much weaker than both materials in normal hybrid
joint designs. So, the crack is expected to propagate along the
interface.

The initiation of a crack, or macrocrack, requires formation of a
microcracking zone of a certain finite characteristic length lFPZ
within �and possibly near� the adhesive layer. This zone, called the
fracture process zone �FPZ�, develops stably and transmits cohe-
sive stresses. As soon as the full FPZ develops, the maximum load
is attained. After that, the equilibrium load is expected to de-
crease, which requires the geometry to be positive �9�, i.e., the
stress intensity factor to increase with the crack length when the
load is constant. A positive geometry is normally satisfied but, of
course, needs to be verified.

In analogy to the derivation of the size effect law for cracks in
homogenous solids �2�, we may assume that, not too close to the
FPZ, the effect of a finite-size FPZ on the elastic field is approxi-
mately equivalent to the effect of an interface crack, whose length
cf is proportional to length lFPZ of the FPZ, and is roughly lFPZ /2�
�2,9,29�. Therefore, what matters at maximum load is the
asymptotic field close �but not too close� to an interfacial crack,
rather than to a corner. It has been shown �17� that the stress
singularity exponent of an interfacial crack must have the form

Fig. 3 Exponent of displacement singularity of hybrid joint: „a…
test series I and II and „b… test series III

Journal of Applied Mechanics JANUARY 2010, Vol. 77 / 011012-3

Downloaded 04 May 2010 to 171.66.16.45. Redistribution subject to ASME license or copyright; see http://www.asme.org/terms/Terms_Use.cfm



�crack = − 1
2 + i�� �16�

In the foregoing, a distinction is made among �1� the near-tip
asymptotic field of the imagined effective crack assumed to have
a similar global effect as the actual FPZ; �2� the near-tip field of
the corner prevailing not too close to the tip of the crack so that it
can envelop the near-tip field of the crack; and �3� the far-away
field affected by the boundary conditions �Fig. 4�. These three
fields are here matched energetically, through the strength of the
singularities. Note that the second field corresponds to what has
been conceived as the intermediate asymptotic—an important
concept conceived and rigorously developed by Barenblatt
�30,31�, which has apparently not yet been used in fracture me-
chanics.

The intermediate asymptotic is attained if D�D�� lFPZ �where
D� is the size of the corner tip singular field�, and the near-tip field
of a crack is applicable only if the radial distance from the crack
tip r� lFPZ �Fig. 4�, i.e., in the large-size asymptotic limit. In this
limit, the asymptotic near-tip field of the hypothetical interfacial
crack of length cf, substituted for the FPZ, must be surrounded by
the singular stress field of a bimaterial corner tip corresponding to
the strongest stress singularity �except if the laminate thickness
were too small, which has been checked not to occur in practical
situations�. Therefore, the stress intensity factor K at the interfa-
cial crack tip will depend on the stress field, whose magnitude is
characterized by the stress intensity factor H of the corner tip. By
dimensional analysis, the two stress intensity factors may be re-
lated as follows �19,22�:

Kcf
i�� = Hcf

�+0.5cf
i�� �17�

where � is the dimensionless complex number. Such a relation has
been analytically derived for the case of a crack emanating from a
homogeneous notch tip �32,33�. For the interfacial crack, the near-
tip stresses on the crack line ahead of the tip and the opening
displacements �or crack face separations� behind the tip can be
expressed as �17,34�


�yy + i�xy = K�2�r�−1/2ri�� �18�


−1�y + i�x =
K

E
�r/2��1/2ri��m �19�

where �i=ui�−r ,0+�−ui�−r ,0−�=displacement jump behind the
crack tip, m is the dimensionless complex number characterizing
the geometry of the structure, E is any one of the elastic moduli of
either material, and 
 is the constant reflecting the material orthot-
ropy.

The energy release rate G represents the energy flux into the
crack tip. The flux can be obtained as the work required for the
crack to advance by an infinitesimal distance, �, divided by �.
Therefore,

G = lim
�→0

1

2�



0

�

��yy�x��y�� − x� + �xy�x��x�� − x��dx �20�

Noting Eqs. �18� and �19� and introducing the dimensionless vari-
able �=x /�, one obtains

G =
�K�2�m�

2E 

0

1�1 − �

�
cos��� ln�1 − �

�
� + ��d� �21�

The foregoing integral can be shown to be a constant �35,36�.
Therefore, the energy release rate function for an interfacial crack
can be always written as

G =
CKK̄

E
�22�

Upon substituting Eqs. �17� and �15� into the foregoing equation,
one obtains

G =
�2D−2�

Ecf
−1−2� �g�2 �23�

where �=nominal stress= P /bD and �g�=C����h�. Within the
LEFM framework, a crack can propagate once G reaches a certain
critical value Gf, called the fracture energy, and this also repre-
sents the condition of maximum load P. From Eq. �23�, one ob-
tains the LEFM expression of nominal strength �N�=Pmax /bD� of
the bimaterial joint

�N = �g�−1�EGfcf
−�−0.5D� �24�

This equation represents the large-size asymptote of the size effect
law. Clearly, this asymptote is a power scaling law, with an expo-
nent directly related to the real part of the exponent of the stron-
gest stress singularity at the bimaterial corner.

Evidently, Eq. �24� applies to fracture of a certain single mode.
Let us now rewrite this equation for the case of a reentrant corner
made of a homogenous material under symmetric tensile loadings,
which is mode I fracture. In this case, only one real stress singu-
larity governs the entire singular stress field �for a homogeneous
reentrant corner under general loading conditions, there are two
unequal real stress singularities, which correspond to symmetric
and asymmetric fracture modes�. The effective size of FPZ can be
expressed as cf =�l0, in which l0=EGf / f t�

2=Irwin’s characteristic
length. Equation �24� may then be written in an alternative form

�N = f t�k�D/cf�� �25�

where k= ��g����−1, and f t� is the tensile strength of the material.
This equation has the same form as the large-size asymptote of the
general size effect law for a reentrant corner under symmetric
tensile loading �Eq. �16� in Ref. �5��, which has recently been
derived on the basis of the strength criterion; i.e., the peak load is
attained when the tensile stress at the center of FPZ reaches the
material tensile strength. The equivalence between Eqs. �25� and
�16� in Ref. �5� is to be expected, since the strength criterion for
single-mode fracture must be a special case of the present energy
criterion.

4 General Size Effect Law Via Asymptotic Matching
A general approximate formula for the size effect on the nomi-

nal strength �N, spanning all the sizes and a range of corner
angles, can be obtained through asymptotic matching �2�. The
geometry of a hybrid joint with various corner angles is shown in
Fig. 5.

A general approximate size effect equation has recently been
developed for symmetrically loaded reentrant corners in homog-
enous materials of various corner angles. In that case, the entire
singular stress field is governed solely by one real stress singular-
ity �5�. For the general case of bimaterial joints in which the
singularities are either a pair of complex conjugates or two un-

Fig. 4 Interfacial crack embedded in the singular near-tip field
of corner
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equal real numbers, the aforementioned analysis shows that only
the real part of the strongest singularity exponent matters for the
energy release rate at the large size limit. Therefore, an equation
of similar type can be used to approximate the general size effect
law for the hybrid joint

�N = �0�1 +
D

D0�
�����

�26�

where �0 and D0� are parameters yet to be determined, � is the
real part of the exponent of the strongest stress singularity at the
bimaterial corner, which is a function of corner angle �. The fore-
going equation has been set up to match the following three es-
sential asymptotic conditions.

�1� For D / l0→0, there must be no size effect since the FPZ
occupies the whole structure �what matters in that case is
solely the material strength, and not the energy release be-
cause the failure is quasiplastic�.

�2� For D / l0→�, Eq. �26� must match Eq. �24� as the large-
size asymptote of the size effect law.

�3� For �→� �smooth surface, no corner�, the size effect of
this type must vanish �in that case, a cohesive crack ini-
tiates from a smooth surface, which leads to another type of
size effect, Type 1 �2,3,37�, which does not represent the
limit case of the present size effect�.

Note that the foregoing equation does not apply for the limiting
case �→0. It is found that, in this limit, the structure may have a
negative geometry �i.e., the derivative of the energy release rate
function with respect to the crack length at constant load is nega-
tive�. In that case, the maximum load does not occur at crack
initiation, since the crack grows stably at increasing load, and the
size effect is different �known as Type 3 size effect law �2,3��.

On the other hand, Eq. �26� for �→� does not continuously
approach the Type 1 size effect law either. A generalization would
be needed to describe the transition to Type 3 size effect law �3�
�for �→0� and to Type 1 size effect �for �→��.

By matching asymptotic condition 2 for arbitrary corner angles,
one further obtains

�0���
D0�

� =
�EGf���

�g����cf
�+0.5 �27�

Parameters �0��� and D0� can be easily obtained by calibrating
the model on the basis of available size effect data. Nevertheless,
it is impossible to obtain the fracture toughness, Gf���, and the
effective size of FPZ, cf, since, for a certain joint angle, there is
only one matching condition involving these two fracture param-
eters. Note that, in general, the fracture toughness Gf��� can vary
with the joint angle � due to mode mixity. The dependence of Gf
on the mode mixity can be expressed as �17,34�

Gf = F�GI,GII,�� �28�

where GI and GII denote the mode I and mode II fracture tough-
ness. Phase angle �, characterizing the degree of mode mixity, is
defined for interfacial crack problems as �17,34,38�

� = tan−1� Im�Kli���

Re�Kli���
� �29�

where l is an arbitrary length scale, which might be chosen as the
fracture process zone size �or multiple of atomic dimensions �38��.
The stress intensity factor for the interfacial crack K is given by
Eq. �17�. The dimensionless complex number � in Eq. �17� de-
pends on the geometry �21,22�. Hence, the phase angle � varies
with the geometry �joint angle�. Therefore, these two fracture pa-
rameters, Gf and cf, cannot be determined merely by fitting of the
experimental size effect data, even if two sets of size effect data
for two different joint angles are considered.

To overcome this obstacle, Gf needs to be estimated by numeri-
cal simulation with the cohesive crack model �39�, where the co-
hesive law may be calibrated by the available experimental size
effect data reported in the preceding paper �1�. Then the effective
fracture process zone size cf can be obtained from Eq. �27�.

5 Numerical Evaluation of Model Parameters
In the foregoing calibration by Eq. �27�, the model parameter

�g� needs to be determined by finite element analysis. To illustrate
the numerical procedure, let us consider the joint used in test
series II. In the numerical model, all the elastic moduli of the
composite are normalized relative to the elastic modulus of steel,
taken as E=E�steel�=1, and the applied force P and the charac-
teristic dimension D are chosen as 1.

Parameter �g� can be obtained by calculating the energy release
rate at the tip of the interfacial crack, which lies well within the
singular stress field characterized by H. This parameter can be
calculated in two steps, as follows.

First, the singular stress zone is obtained by finite element
analysis of the joint. In the linear elastic finite element model,
eight-node quadrilateral elements are used for both materials, as
shown in Fig. 6�a�. To obtain the singular field, normally ex-
pressed in polar coordinates, the regions near the bimaterial cor-
ners are meshed by numerous rings of elements, which are pro-
gressively refined on approach to the tip so that the ratio between
the smallest and largest element sizes is about 1: 100.

Figure 7 shows, in the logarithmic scale, the profiles of magni-
tude of normal and shear stress ���� and �r�� along the interface,
for both corners. For the left corner of the joint �Fig. 7�a��, the
slopes of the asymptotes of ����� and ��r�� in the logarithmic scale

Fig. 5 General geometry of hybrid joint with varying joint
angle

Fig. 6 „a… Finite element model of hybrid joint and „b… finite
element model of ancillary boundary layer problem
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plot are not the same. This difference is due to the fact that the
exponent of stress singularity at this corner is complex. The
asymptotic stress field is given by Eq. �14�, which can further be
expressed as

�ij = �H��
ij����r� cos��ij + � ln r� �30�

It is obvious that the dependence of �ij on r is not a simple power
law. Due to the unknown variable �ij, which characterizes the
mode mixity, it is impossible to determine the complex exponent
of stress singularity simply by matching the stress profile along
the interface only, and so the reach of the singular stress zone is
not known. As for the stress profile oscillation, which must occur
sufficiently close to the corner tip, its region is normally very
small due to the very small value of the imaginary part �. It is for
this reason that this oscillation is not generally reflected in finite
element results.

At the right corner of the joint, the asymptotes of ����� and ��r��
are seen to have the same slope �Fig. 7�b��. This indicates that the
stress singularity at that corner must be real and the near-tip stress
field is given by �ij =Hr�
ij��� �26�. By matching the asymptotic
stress field, the stress singularity exponent is found to be �0.219,
and so the corresponding displacement singularity exponent is
0.781. This validates the previous calculations made by the com-
plex potential method.

Second, one needs to solve an ancillary boundary layer problem
which couples the inner stress field caused by the interfacial crack
to the outer singular H-field. The boundary layer problem consist-
ing of a semicircular region �fiber composite� and a quartercircu-
lar region �steel� �Fig. 6�b�� is subjected to displacements of the
asymptotic H-field, which can be directly obtained from the FEM
analysis in the step 1. Since the exact reach of the H-field is not
determined, the H-field displacement is extracted at a reasonably
small radius �r /D�0.01�. The interfacial crack length l is chosen
to be very small compared with the dimension of the boundary
layer. This ensures the crack to lie well within the H-field. The
energy release rate G at the interfacial crack tip is directly calcu-
lated via the J-integral using the commercial FEM software
ABAQUS �40�. When the loading, dimension, and elastic constants
are normalized, one may rewrite Eq. �23� as follows:

log G = �1 + 2��log�l� + 2 log�g� �31�

Upon considering various small crack lengths l, one obtains the
relationship between log G and log l �Fig. 8�. It is seen to follow a
straight line, whose slope is 0.082. This agrees well with the value
of �1+2��. One can then easily obtain the value �g�=1.042.

6 Conclusions
With the help of asymptotic matching, a general approximate

size effect law for the strength of hybrid metal-composite joints

can be derived from the near-tip asymptotic stress fields of a bi-
material corner and of an interface crack emanating from this
corner.

The size effect law derived is validated by comparison with size
effect experiments on metal-composite joints with two kinds of
fiber-polymer composites.

The size effect in hybrid joints is quite strong. Thus it is unsafe
to design large hybrid joints on the basis of classical material
failure criteria expressed in terms of stresses or strains, or both.

Neither it is safe to extrapolate from small-scale laboratory tests
of hybrid joints to large structure sizes without considering the
size effect.
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Importance of Higher Order
Modes and Refined Theories in
Free Vibration Analysis of
Composite Plates
This paper evaluates frequencies of higher-order modes in the free vibration response of
simply-supported multilayered orthotropic composite plates. Closed-form solutions in
harmonic forms are given for the governing equations related to classical and refined
plate theories. Typical cross-ply (0 deg/90 deg) laminated panels (10 and 20 layers) are
considered in the numerical investigation (these were suggested by European Aeronautic
Defence and Space Company (EADS) in the framework of the “Composites and Adaptive
Structures: Simulation, Experimentation and Modeling” (CASSEM) European Union
(EU) project. The Carrera unified formulation has been employed to implement the con-
sidered theories: the classical lamination theory, the first-order shear deformation theory,
the equivalent single layer model with fourth-order of expansion in the thickness direc-
tion z, and the layerwise model with linear order of expansion in z for each layer.
Higher-order frequencies and the related harmonic modes are computed by varying the
number of wavelengths �m,n� in the two-plate directions and the degrees of freedom in
the plate theories. It can be concluded above all that—refined plate models lead to
higher-order frequencies, which cannot be computed by simplified plate theories—
frequencies related to high values of wavelengths, even the fundamental ones, can be
wrongly predicted when using classical plate theories, even though thin plate geometries
are analyzed. �DOI: 10.1115/1.3173605�

1 Introduction
The application of composite materials in aircraft and space

vehicles has increased rapidly over the past 3 decades due to their
high strength and low weight. Composite materials offer many
advantages, with respect to traditional metallic ones. However, a
number of complicating effects arises in their design, analysis,
modeling, and manufacturing �1�. In this work, attention is di-
rected to the evaluation of frequencies for higher modes in the
free vibration response. The behavior and design of vibrating
shells and plates have been extensively discussed in the reports by
Leissa �2,3�, and more recently in the book by Werner �4�, among
others.

In the most general case of three-dimensional �3D� analyses,
the number of frequencies for a free vibration problem is infinite:
three displacement components �three degrees of freedom �DOF��
in each point �which are � in the three directions x ,y ,z� leads to
3��3 vibration modes. Assumptions are made in the thickness
direction z in the case of a two-dimensional plate/shell problem,
that is, the three displacements in each point are expressed in
terms of a given number of degrees of freedom �NDOF�, which
varies from theory to theory. As a result, the number of vibration
modes is NDOF��2. For beams it would be NDOF��1. In the
case of the application of computational models, such as the finite
element method �FEM�, the number of modes is a finite number;
it coincides with the number of employed degrees of freedom:
�1

NodeNDOFi, where “Node” denotes the number of nodes used in
the FE mathematical model, and NDOFi is the NDOF in the
i-node. Limitations of FE method are overcome by using the sta-

tistical energy analysis �SEA� method, which is usually preferred
in case of higher modes such as acoustics problems �5�. It appears
clear that some modes are tragically lost in simplified models
�such as two-dimensional models� as well as in computational
ones.

The case in which closed-form solutions are available for a
given set of differential governing equations is of particular inter-
est. Interest is herein focused on simply-supported multilayered
plates made of orthotropic layers for which Navier type solutions
exist. Harmonic forms are assumed for the unknown variables in
the in-plane directions �x ,y� for each couple of wave numbers
�m ,n�. The number of vibration modes is in this case simply given
by the NDOF of the adopted plate theory for each couple of inte-
ger �m ,n� values. Since �m ,n� can assume infinity values, the
number of modes is NDOF��2, as in the continuous case. In the
above described scenario, the two following points are of interest
as far as the evaluation of higher modes is concerned.

1. Different plate theories lead to different numbers of vibra-
tion modes, and higher modes related to higher NDOF can
only be obtained by implementing refined plate theories.

2. Other higher vibration modes can be obtained by consider-
ing high values of m ,n.

In conclusion, a complete investigation of higher vibration
modes requires the use of refined theories and higher numbers of
the couple �m ,n�. This investigation is the subject of the present
paper. An overview on available works on this topic is made in the
following.

The main features of free vibration analysis for composite
plates have been discussed in the paper by Noor �6�; this paper
summarizes results based on two-dimensional plate theories for a
low-frequency free vibration analysis of simply-supported cross-
ply laminated plates consisting of a large number of layers. These
results show that the error in the predictions of the classical plate
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theories is highly dependent on the number and stacking of the
layers, the degree of orthotropy of the individual layers, and the
thickness ratio of the plate. Liew et al. �7� wrote a review of
existing literature on the vibration analysis of thick plates �132
publications were cited� up to 1995.

The main aim of this paper is to understand the importance of
advanced and refined two-dimensional models in the case of
higher modes for the free vibration response of multilayered com-
posite plates. Shuyu �8� wrote that shear deformation and the ro-
tary inertia could be ignored for thin plates, but for higher fre-
quencies, even if the plate is very thin, the shear deformation
cannot be ignored, so classical theories are suitable only for thin
plates and vibrational orders of low natural frequency. These con-
clusions refer to isotropic plates, and the situation drops away for
composite plates. Thick isotropic plates are considered in Refs.
�9,10� for low frequencies and the finite element method. Differ-
ent boundary conditions, shapes of the considered plate, and
thickness ratios are considered in Refs. �11–18�, but they are re-
stricted to isotropic shells and plates and to low and medium
frequencies. Interesting conclusions were obtained for homoge-
neous plates, in the case of high-frequency investigations, by
Zhao et al. �19� who introduced a discrete singular convolution
�DSC� algorithm to investigate square isotropic plates with six
distinct boundary conditions. The method was applied for high-
frequency vibration analysis by providing extremely accurate fre-
quency parameters for plates vibrating in the first 5000 modes,
and an increase in mesh size is clearly shown for high mode
numbers. Via new hierarchical functions, Beslin and Nicolas �20�
investigated very high modes �up to 2048� for rectangular steel
plates with different boundary conditions. Other interesting inves-
tigations for high frequencies, in the case of analytical or numeri-
cal solutions, are reported in Refs. �21–25�. In particular, Wei et
al. �25� investigated high-frequency vibrations of structures for
isotropic plates, by means of the DSC algorithm. The investiga-
tion considered the first 7100 modes of the beam and the first
4500 modes of the two-span plates.

The above cited works all concern homogeneous structures,
however, the situation becomes more critical in the case of lami-
nated structures. A substantial number of papers have been dedi-
cated to the free vibrational response of multilayered plates, in
particular, for low and medium frequencies ranges. Among these
papers, Ref. �26� is of particular interest, where Kim and Hwang
applied a modal parameter estimation technique to investigate
natural frequencies and damping ratios of cross-ply and angle-ply
composite laminates. Gorman and Ding �27� used the superposi-
tion method to obtain the first six modes for orthotropic plates and
the first four modes for cross-ply plates. Comparisons, for low
modes, between the traditional superposition method and the
superposition-Galerkin method are reported in Ref. �28�. Cross-
ply and angle-ply laminated plates with different boundary condi-
tions are considered in Refs. �29,30�; the first paper is about a
recursive solution based on a Lagrange multiplier method, and the
second is about a finite element method �based on a third-order
shear deformation theory�, which, in the case of linear analysis,
underlines the effects of wide-to-thickness ratio, material aniso-
tropy, fiber orientation, aspect ratio, boundary conditions, and
number of layers. In Refs. �31–35�, for the case of analytical,
semi-analytical, and finite element solutions, advanced theories
such as mixed approaches, higher-order zig-zag theories, and
higher-order discrete layer methods have been proposed for com-
posite sandwiches and laminated plates, shells, beams and blades;
all these investigations are restricted to low and natural frequen-
cies. Other investigations about the free vibrations of composite
structures, in the range of low and medium frequencies, are pre-
sented in Refs. �36–39�.

Papers that consider higher mode investigations are not so nu-
merous, and these are even less in the cases of thick plates and/or
composite structures. Reference �40�, which applies a displace-
ment finite element based on C0-continuous displacements to

simply-supported homogeneous and laminated plates in the case
of thick structures and high frequencies modes, is of interest. A
comparison with the exact solution of higher-order theories
�HOTs�, the first-order shear deformation theory �FSDT�, and the
classical lamination theory �CLT� is proposed for the first five
antisymmetric modes and the first three symmetric modes. In
Refs. �41,42�, by means of the hierarchical finite element method
�HFEM� and the Galerkin element method �GEM�, respectively,
the vibration analysis of laminated rectangular plates and damped
sandwich plates is led over a wide frequency range.

In the recent past, the free vibration response of multilayered
plates and shells has been investigated in various articles by em-
ploying the Carrera unified formulation �CUF�: The transverse
normal stress effects have been evaluated in Ref. �43�, the benefits
of mixed models based on the Reissner’s mixed variational theo-
rem have been considered in Ref. �44�, and the advantages of
layer-wise mixed models have been outlined in Ref. �45�. The
present paper uses CUF to explore frequencies of higher-order
free vibration modes, according to points 1 and 2. The aim is
duplicate—to show the limitations of classical theories, such as
the CLT and the FSDT—to predict the frequencies of the higher
modes. Two refined plate theories are employed for this purpose:
the first is based on an equivalent single layer �ESL� approach
with fourth-order expansion of displacements in the thickness di-
rection z; the second one is a layerwise �LW� model with linear
expansion in the z direction in each layer. Numerical solutions are
given in closed form in the case of two cross-ply laminated plates
whose data have been provided by EADS in the framework of the
EU FP7 project known as CASSEM.

The paper has been organized as follows: Sec. 2 illustrates the
kinematics of plate theories; Sec. 3 outlines the governing equa-
tions; and the numerical analysis and conclusions are given in
Secs. 4 and 5, respectively.

2 Kinematic Description of the Considered Plate
Theories

Classical theories �such as the CLT and the FSDT�, refined
models �such as the ESL with fourth-order of expansion �N=4�
and the LW with linear order of expansion in the z direction �N
=1�� are employed for the dynamic analysis of laminated plates.
These theories are developed in the framework of the CUF
�46,47�.

2.1 Classical Theories: CLT and FSDT. Multilayered plates
are structures in which one dimension, the thickness, is one or two
orders of magnitude less than the in-plane ones. This peculiarity
leads to the possibility of modeling these structures as a two-
dimensional continuum �see Fig. 1�.

Classical two-dimensional theories such as CLT and FSDT are
models in which the number of variables does not depend on the

b

a

hk

h

Fig. 1 Geometry and notations for the considered multilay-
ered plates
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number of layers �for a detailed overview see Ref. �48��. Kirch-
hoff hypotheses are considered in the CLT case as follows:

�1� Straight lines perpendicular to the midsurface before defor-
mation remain straight after deformation.

�2� The transverse normals do not experience elongation.
�3� The transverse normals rotate in order to remain perpen-

dicular to the midsurface after deformation.

The first two assumptions imply that the transverse displace-
ment is independent of the transverse �or thickness� coordinate,
and that the transverse normal strain �zz is neglected. The third
assumption results in zero transverse shear strains ��xz=�yz=0�.
The displacement field �u ,v ,w� can then be described by using
the following relations:

u�x,y,z� = u0�x,y� − z
�w0

�x

v�x,y,z� = v0�x,y� − z
�w0

�y
�1�

w�x,y,z� = w0�x,y�
where the index 0 indicates midsurface displacement values.

The third of the above hypothesis is removed in the FSDT case,
and the transverse normals do not remain perpendicular to the
midsurface after deformation. The displacement field of FSDT is
as follows:

u�x,y,z� = u0�x,y� + z�x�x,y�

v�x,y,z� = v0�x,y� + z�y�x,y� �2�

w�x,y,z� = w0�x,y�

where

�u

�z
= �x,

�v
�z

= �y �3�

denote the rotations of the z−y and z−x planes, respectively. Fig-
ure 2 shows the displacements field in z direction of a typical
laminate, in the case of CLT and FSDT. For these two classical
kinematics, plane-stress conditions are applied as in Ref. �49� to
avoid the so called Poisson locking phenomena.

2.2 Carrera Unified Formulation and Refined Models. The
key point of the CUF is the use of generalized assumptions for the
primary variables of the problem; the generic variable a is ex-
panded using a set of thickness functions that depend only on the
thickness coordinate z �a detailed description of the CUF can be
found in Refs. �46,47��:

a�x,y,z� = F��z�a��x,y� �4�

where �=0,1 , . . . ,N, and N is the desired order of the expansion.
F� are the employed thickness functions. ESL and LW approaches
can be both developed by appropriate choice of thickness
functions.

Equivalent single layer models are based on the assumption of
a global description of the displacement field along the whole
plate thickness; a Taylor expansion is used as follows:

u�x,y,z� = F��z�u��x,y� = zrur, r = 0,1,2, . . . ,N �5�

N is a free parameter that can assume values from 1 �linear� to 4
�fourth order�. The case N=4 is used in this work as follows:

u�x,y,z� = u0�x,y� + zu1�x,y� + z2u2�x,y� + z3u3�x,y� + z4u4�x,y�

v�x,y,z� = v0�x,y� + zv1�x,y� + z2v2�x,y� + z3v3�x,y� + z4v4�x,y�

w�x,y,z� = w0�x,y� + zw1�x,y� + z2w2�x,y� + z3w3�x,y� + z4w4�x,y�
�6�

Z

x,y

u v w

Fig. 2 Displacements distribution in thickness direction in
case of CLT and FSDT

Z

x,y

u v w

Fig. 3 Displacements distribution in thickness direction in
case of ESL„N=4…

Z

x,y

u v w

Fig. 4 Displacements distribution in thickness direction in
case of LW„N=1…

CLT

3 degrees of freedom

Fig. 5 Multilayer stiffness matrix for CLT
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Related displacement fields in the z direction are drawn in Fig. 3.
A layerwise description includes an independent expansion for

each layer k as follows:

uk�x,y,z� = Ft�z�ut
k�x,y� + Fb�z�ub

k�x,y� + Fr�z�ur
k�x,y� = F�u�

k

�7�
with

� = t,b,r, r = 2, . . . ,N, k = 1,2, . . . ,NL

where t and b mean top and bottom of the considered layer, and r
represents the higher-order terms of expansion up to the fourth
�N=4�; NL is the number of layers. F� are appropriate combina-
tions of Legendre polynomials �see Refs. �46,47��. In the present
investigation a LW model with N=1 will be used as follows:

uk�x,y,z� = Ft�z�ut
k�x,y� + Fb�z�ub

k�x,y�

vk�x,y,z� = Ft�z�vt
k�x,y� + Fb�z�vb

k�x,y� �8�

wk�x,y,z� = Ft�z�wt
k�x,y� + Fb�z�wb

k�x,y�

The displacement forms in the z direction are considered in Fig. 4.

CLT and FSDT can be obtained as particular cases of ESL
models �N=1�, by using a penalty technique on. CLT is obtained
by forcing constant w and infinite transverse shear correction fac-
tor; FSDT has constant w and the transverse shear correction fac-
tor is equal to 1 �see Refs. �46,47��.

3 Governing Equations and Fundamental Nuclei
For a dynamic problem related to multilayered plates, the prin-

ciple of virtual displacements �PVDs� states �47�,

�
V

���pG
T �pC + ��nG

T �nC�dV = �Lin + �Le �9�

where subscripts p and n indicate in-plane and out-plane compo-
nents, respectively; � and � are the stress and strain vectors, �Lin

is the virtual variation of inertial work, �Le is the virtual variation
of external work, and V is the considered volume.

The governing equations of the proposed models can be ob-
tained upon substitution of geometrical relations, constitutive
equations, and by applying the unified formulation by Carrera
�46,47�.

Geometrical relations link strain components to displacement
vector, they are introduced in Eq. �9� where the subscript G is
considered. The following relations hold in case of a plate:

�pG
k = ��xx,�yy,�xy�kT = Dpuk, �nG

k = ��xz,�yz,�zz�kT = �Dnp + Dnz�uk

�10�

where �pG
k and �nG

k are the in-plane and out-plane strain compo-
nents, respectively. uk= �uk ,vk ,wk� is the displacement vector, and
k indicates the considered layer. The explicit form of the intro-
duced arrays are as follows:

5 degrees of freedom

FSDT

Fig. 6 Multilayer stiffness matrix for FSDT

Kuouo Kuovo Kuowo

Kvouo Kvovo Kvowo

Kwouo Kwovo Kwowo

Kuou1 Kuov1 Kuow1

Kvou1 Kvov1 Kvow1

Kwou1 Kwov1 Kwow1

Kuou2 Kuov2 Kuow2

Kvou2 Kvov2 Kvow2

Kwou2 Kwov2 Kwow2

Kuou3 Kuov3 Kuow3

Kvou3 Kvov3 Kvow3

Kwou3 Kwov3 Kwow3

Kuou4 Kuov4 Kuow4

Kvou4 Kvov4 Kvow4

Kwou4 Kwov4 Kwow4

Ku1uo Ku1vo Ku1wo

Kv1uo Kv1vo Kv1wo

Kw1uo Kw1vo Kw1wo

Ku1u1 Ku1v1 Ku1w1

Kv1u1 Kv1v1 Kv1w1

Kw1u1 Kw1v1 Kw1w1

Ku1u2 Ku1v2 Ku1w2

Kv1u2 Kv1v2 Kv1w2

Kw1u2 Kw1v2 Kw1w2

Ku1u3 Ku1v3 Ku1w3

Kv1u3 Kv1v3 Kv1w3

Kw1u3 Kw1v3 Kw1w3

Ku1u4 Ku1v4 Ku1w4

Kv1u4 Kv1v4 Kv1w4

Kw1u4 Kw1v4 Kw1w4

Ku2uo Ku2vo Ku2wo

Kv2uo Kv2vo Kv2wo

Kw2uo Kw2vo Kw2wo

Ku2u1 Ku2v1 Ku2w1

Kv2u1 Kv2v1 Kv2w1

Kw2u1 Kw2v1 Kw2w1

Ku2u2 Ku2v2 Ku2w2

Kv2u2 Kv2v2 Kv2w2

Kw2u2 Kw2v2 Kw2w2

Ku2u3 Ku2v3 Ku2w3

Kv2u3 Kv2v3 Kv2w3

Kw2u3 Kw2v3 Kw2w3

Ku2u4 Ku2v4 Ku2w4

Kv2u4 Kv2v4 Kv2w4

Kw2u4 Kw2v4 Kw2w4

Ku3uo Ku3vo Ku3wo

Kv3uo Kv3vo Kv3wo

Kw3uo Kw3vo Kw3wo

Ku3u1 Ku3v1 Ku3w1

Kv3u1 Kv3v1 Kv3w1

Kw3u1 Kw3v1 Kw3w1

Ku3u2 Ku3v2 Ku3w2

Kv3u2 Kv3v2 Kv3w2

Kw3u2 Kw3v2 KW3w2

Ku3u3 Ku3v3 Ku3w3

Kv3u3 Kv3v3 Kv3w3

Kw3u3 Kw3v3 Kw3w3

Ku3u4 Ku3v4 Ku3w4

Kv3u4 Kv3v4 Kv3w4

Kw3u4 Kw3v4 Kw3w4

Ku4uo Ku4vo Ku4wo

Kv4uo Kv4vo Kv4wo

Kw4uo Kw4vo Kw4wo

Ku4u1 Ku4v1 Ku4w1

Kv4u1 Kv4v1 Kv4w1

Kw4u1 Kw4v1 Kw4w1

Ku4u2 Ku4v2 Ku4w2

Kv4u2 Kv4v2 Kv4w2

Kw4u2 Kw4v2 Kw4w2

Ku4u3 Ku4v3 Ku4w3

Kv4u3 Kv4v3 Kv4w3

Kw4u3 Kw4v3 Kw4w3

Ku4u4 Ku4v4 Ku4w4

Kv4u4 Kv4v4 Kv4w4

Kw4u4 Kw4v4 Kw4w4

N O 1 2 3 4

O

1

2

3

4

15 degrees of freedom

ED4

Fig. 7 Multilayer stiffness matrix for ESL„N=4…

KuTuT KuTvT KuTwT

KvTuT KvTvT KvTwT

KwTuT KwTvT KwTwT

KuTuB KuTvB KuTwB

KvTuB KvTvB KvTwB

KwTuB KwTvB KwTwB

KuTuT KuTvT KuTwT

KvTuT KvTvT KvTwT

KwTuT KwTvT KwTwT

KuBuT KuBvT KuBwT

KvBuT KvBvT KvBwT

KwBuT KwBvT KwBwT

KuTuB KuTvB KuTwB

KvTuB KvTvB KvTwB

KwTuB KwTvB KwTwB

KuBuT KuBvT KuBwT

KvBuT KvBvT KvBwT

KwBuT KwBvT KwBwT

KuTuT KuTvT KuTwT

KvTuT KvTvT KvTwT

KwTuT KwTvT KwTwT

KuTuB KuTvB KuTwB

KvTuB KvTvB KvTwB

KwTuB KwTvB KwTwB

KuBuT KuBvT KuBwT

KvBuT KvBvT KvBwT

KwBuT KwBvT KwBwT

KuBuB KuBvB KuBwB

KvBuB KvBvB KvBwB

KwBuB KwBvB KwBwB

top=bottom

top=bottom

Layer 3

Layer 2

Layer 1

LD1

12 degrees of freedom

Fig. 8 Multilayer stiffness matrix for LW„N=1… in case of a
three-layered plate
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Dp = ��x 0 0

0 �y 0

�y �x 0
�, Dnp = �0 0 �x

0 0 �y

0 0 0
�, Dnz = ��z 0 0

0 �z 0

0 0 �z
�
�11�

the symbol � indicates the partial derivatives.
Constitutive equations link stress components to strain compo-

nents. They are introduced in Eq. �9� where the subscript C is
considered. The following relations hold:

�pC
k = ��xx,�yy,�xy�kT = Cpp

k �pG
k + Cpn

k �nG
k ,

�12�
�nC

k = ��xz,�yz,�zz�kT = Cnp
k �pG

k + Cnn
k �nG

k

The explicit form of the introduced arrays are as follows:

Cpp
k = �C11 C12 C16

C12 C22 C26

C16 C26 C66
�

k

, Cpn
k = �0 0 C13

0 0 C23

0 0 C36
�

k

�13�

Cnp
k = � 0 0 0

0 0 0

C13 C23 C36
�

k

, Cnn
k = �C55 C45 0

C45 C44 0

0 0 C33
�

k

Closed form solutions are obtained for particular cases such as
simply-supported plates, and particular conditions for the material
properties. In this case the governing equations can be exactly
solved. The following harmonic assumptions can be made for the
field variables �see Refs. �43,47��:

u�
k = �m,n

U�
k cos

m	xk

ak
sin

n	yk

bk
ei
mnt k = 1,NL

v�
k = �m,n

V�
k sin

m	xk

ak
cos

n	yk

bk
ei
mnt � = t,b,r �14�

w�
k = �m,n

W�
k sin

m	xk

ak
sin

n	yk

bk
ei
mnt r = 2, . . . ,N

in which ak and bk are the plate lengths in the xk and yk directions,
respectively; U�

k, V�
k, and W�

k are the displacement amplitudes,
while m and n are the correspondent wave numbers; i=	−1, t is
the time, and 
mn is the circular frequency. These assumptions
correspond to the simply-supported boundary conditions. The sys-

Table 1 Number of frequencies for the two considered plates

m=n=500

NL=10 �10-layered plate� NL=20 �20-layered plate�

CLT �m�n�NDOF� 500�500�3=750,000 500�500�3=750,000
FSDT �m�n�NDOF� 500�500�5=1,250,000 500�500�5=1,250,000
ESL�N=4� �m�n�NDOF� 500�500�15=3,750,000 500�500�15=3,750,000
LW�N=1� �m�n� ��NL+1��3�� 500�500�33=8,250,000 500�500�63=15,750,000

Table 2 Geometry and materials of multilayered plates in Refs.
†50,51‡

Assessment �50�

G12

ET
=

G13

ET

0.50

G23

ET

0.35

�12=�13 0.30
�23 0.49
NL�No. of layers� 10
��orientation� 0 deg/90 deg/…
a=b �m� -
a

h
5

Assessment �51�

EL

ET

40

G12

ET
=

G13

ET

0.50

G23

ET

0.60

�12=�13=�23 0.25
NL�No. of layers� 4
��orientation� 0 deg/90 deg/90 deg /0 deg
a=b �m� -

Table 3 Free vibration response of a simply-supported square
plate. Fundamental circular frequency �̄=�h	� /ET. Wave-
lengths m=n=1.

EL /ET 3 30

3D �50� 0.2530 0.4027
CLT 0.2858 0.6322
FSDT 0.2576 0.4306
ESL�N=1� 0.2576 0.4306
LW�N=1� 0.2534 0.4042
ESL�N=4� 0.2539 0.4078
LW�N=4� 0.2530 0.4027

Table 4 Free vibration response of a simply-supported square plate. Fundamental circular

frequency �̄=�	 a4�

ETh2 . Wavelengths m=n=1.

a /h 2 4 10 20 100

CLT �51� 15.830 17.907 18.652 18.767 18.804
FSDT �51� 5.492 9.369 15.083 17.583 18.751
ESL�N=1� 5.919 9.936 15.524 17.763 18.759
LW�N=1� 5.414 9.473 15.334 17.703 18.761
ESL�N=4� 5.380 9.384 15.232 17.655 18.754
LW�N=4� 5.260 9.224 15.148 17.626 18.753
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tem of governing equations, at multilayered plate level could be
formally written as in the following:

Ku = Mü �15�

The stiffness matrix K and the inertial matrix M are assembled via
indices � and s for the order of expansion in the thickness direc-
tion z, and via the index k for the multilayer assembling �ESL or

Table 5 Geometry and materials of multilayered plates for the
two proposed benchmarks

Material

E11 �GPa� 310
E22 �GPa� 6.50
E33 �GPa� 6.50
�12 0.365
�13 0.365
�23 0.365
G12 �GPa� 4.30
G13 �GPa� 4.30
G23 �GPa� 4.30

 �kg /m3� 1500

Benchmark 1

hk�kth layer� �m� 0.0001
NL�No. of layers� 10
��orientation� 0 deg/90 deg/…
a �m� 1.5
b �m� 1.5

Benchmark 2

hk�kth layer� �m� 0.0001
NL�No. of layers� 20
��orientation� 0 deg/90 deg/…
a �m� 0.75
b �m� 0.75

Table 6 Benchmark 1, 10-layered plate, and a /h=1500. Comparison between classical, HOT,
and LW theories. Circular frequencies parameter �̄=�	a4� /106ETh2.

m=1, n=1

CLT 0.0203 23.108 24.076
FSDT 0.0203 23.108 24.076 6339.3 6339.3
ESL�N=4� 0.0203 23.113 24.076 7617.3 5750.7 5750.7 15,285 47,267 11,540 31,616

11,540 35,684 23,869 23,869 35,684
LW�N=1� 0.0203 23.108 24.076 5772.8 5772.8 7646.5 11,688 11,688 15,482 17,890

17,890 23,698 24,521 24,521 32,480 31,696 31,696 39,439 39,439 41,987
47,530 47,530 83,970 80,981 52,244 73,175 55,246 55,245 62,947 61,134
63,392 61,134 63,392

m=5, n=5
CLT 0.5078 115.54 120.38
FSDT 0.5078 115.54 120.38 6340.4 6340.3
ESL�N=4� 0.5077 115.56 120.38 5752.0 5751.8 7617.2 …… …… …… ……
LW�N=1� 0.5078 115.54 120.38 5773.9 5774.0 7646.5 …… …… …… ……

m=10, n=10
CLT 2.0313 231.08 240.76
FSDT 2.0299 231.08 240.75 6343.5 6344.0
ESL�N=4� 2.0295 231.12 240.75 5755.8 5755.3 7617.1 …… …… …… ……
LW�N=1� 2.0298 231.08 240.75 5777.4 5777.9 7646.3 …… …… …… ……

m=50, n=50
CLT 50.737 1155.4 1203.8
FSDT 49.873 1154.9 1203.3 6443.8 6458.1
ESL�N=4� 49.684 1155.1 1203.0 5878.5 5865.6 7613.4 …… …… …… ……
LW�N=1� 49.696 1154.9 1203.0 5887.2 5900.2 7642.8 …… …… …… ……

m=100, n=100
CLT 202.38 2311.1 2407.6
FSDT 189.67 2306.8 2403.3 6801.4 6748.8
ESL�N=4� 187.13 2307.2 2401.5 6244.1 6197.7 7604.1 …… …… …… ……
LW�N=1� 187.25 2306.8 2401.5 6218.0 6264.8 7634.1 …… …… …… ……

m=500, n=500
CLT 4657.4 11,584 12,038
FSDT 2379.6 11,196 11,514 13,639 13,961
ESL�N=4� 2216.2 7576.2 11,116 11,433 12,981 13,145 …… …… …… ……
LW�N=1� 2220.2 7609.8 11,111 11,431 13,011 13,146 …… …… …… ……

m=n=1 m=n=2

m=n=5 m=n=10

Fig. 9 Examples of in-plane modes
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LW�. Upon substitution of Eq. �14� in Eq. �15�, the free vibration
response leads to an eigenvalue problem as follows:


K − 
mn
2 M
 = 0 �16�

3.1 Numbers of Higher Modes for the Considered
Problems. By giving the in-plane wave numbers m and n, the
number of vibration modes is equal to the number of degrees of
freedom of the considered two-dimensional model. In other
words, the number of eigenvalues �circular frequencies� depends
on the dimension of the multilayer level matrix K. CLT, FSDT,
and ESL models have a number of degrees of freedom that does
not depend on the number of layers. CLT has three total degrees
of freedom and the matrix K has dimension 3�3, see Fig. 5.
FSDT has five degrees of freedom and K is 5�5 �Fig. 6�. The
ESL model with N=4 has 15 DOFs for the whole plate and the
stiffness matrix has dimension 15�15, as illustrated in Fig. 7.
The above dimensions do not change when the number of layers
is changed. This is not true for the case of layer-wise analyses,
which have a number of degrees of freedom that depends on the
number of the considered layers. The LW theory with N=1 has 6
DOFs for each layer k; this leads, for the two considered lami-
nates, 10 and 20 layers, to 33 DOFs and 63 DOFs, respectively.
The corresponding stiffness matrices K have dimension 33�33 in

the 10-layer case and 63�63 in the 20-layer case. Figure 8 shows
the case of the LW model �N=1� for a three layer plate as an
example. In this case, the matrix dimension is 12�12.

In conclusion, for each couple �m ,n�, we obtain 3 eigenvalues
for the CLT, 5 for the FSDT, 15 for the ESL�N=4�, and 33 and 63
eigenvalues for the LW�N=1�. These eigenvalues represent the
number of modes related to the same in-plane harmonic mode. It
is clear that only refined theories permit higher-order modes to be
investigated. Table 1 shows the number of frequencies for the four
considered theories for the two cases of 10- and 20-layered plates.
The case in which the couple of positive integers �m ,n� varies
from 1 to 500 is considered. It is evident that some modes are
tragically lost when using simplified plate model analyses.

4 Results and Discussion
Two assessments are first made to demonstrate the effectiveness

of the considered refined models. A higher vibration modes analy-
sis is then made by referring to two benchmarks.

4.1 Assessments. The problem proposed by Noor and Burton
in Ref. �50� is reconsidered. A 3D solution was given in Ref. �50�
for a simply-supported 10-layered plate with a thickness ratio
a /h=5; the geometry and material are reported in Table 2, and the

Table 7 Benchmark 2, 20-layered plate, and a /h=375. Comparison between classical, HOT,
and LW theories. Circular frequencies parameter �̄=�	a4� /106ETh2.

m=1, n=1

CLT 0.0205 5.7765 6.0183
FSDT 0.0205 5.7765 6.0182 396.21 396.20
ESL�N=4� 0.0205 5.7776 6.0182 359.43 359.42 476.03 955.24 2953.8 721.18 721.18

1975.8 2230.0 1491.7 1491.6 2230.0
LW�N=1� 0.0205 5.7765 6.0182 359.69 359.70 476.38 721.54 721.54 955.71 1087.8

1087.8 1440.9 1460.9 1460.9 1842.8 1842.8 1935.0 2236.1 2236.1 2441.0
2642.7 2642.7 2961.9 3064.8 3064.8 3504.1 3504.1 3500.5 3961.6 3961.6
4059.6 4437.3 4437.3 4641.5 4929.3 4929.3 5247.5 5433.3 5433.3 10495
10,399 5877.6 10,121 5940.6 5940.6 9690.6 9146.1 6529.4 6437.8 6437.8
8527.4 6904.9 6904.9 7196.8 7315.9 7315.9 7640.9 7640.9 7868.9 7923.2
7923.2 7850.6 7850.6

m=5, n=5
CLT 0.5128 28.882 30.091
FSDT 0.5113 28.882 30.091 397.21 397.36
ESL�N=4� 0.5111 28.888 30.090 360.67 360.54 475.99 …… …… …… ……
LW�N=1� 0.5111 28.882 30.090 360.80 360.94 476.34 …… …… …… ……

m=10, n=10
CLT 2.0504 57.765 60.183
FSDT 2.0273 57.761 60.178 400.35 400.93
ESL�N=4� 2.0228 57.772 60.172 364.51 363.99 475.87 …… …… …… ……
LW�N=1� 2.0229 57.761 60.172 364.26 364.78 476.23 …… …… …… ……

m=50, n=50
CLT 50.550 288.85 300.91
FSDT 40.649 288.33 300.36 500.71 490.60
ESL�N=4� 39.321 288.39 299.03 475.24 460.75 469.45 …… …… …… ……
LW�N=1� 39.336 288.33 299.03 460.93 469.66 475.60 …… …… …… ……

m=100, n=100
CLT 194.03 601.83 577.89
FSDT 112.44 574.19 596.91 727.21 704.64
ESL�N=4� 106.26 466.69 574.18 605.33 682.55 694.41 …… …… …… ……
LW�N=1� 106.27 467.08 574.06 605.33 682.58 694.54 …… …… …… ……

m=500, n=500
CLT 2557.8 2923.5 3009.1
FSDT 671.32 2820.0 3087.6 3100.0 2832.1
ESL�N=4� 654.92 771.34 1107.4 2015.5 2495.8 2508.4 …… …… …… ……
LW�N=1� 640.60 759.49 1101.4 1507.8 1943.4 2394.3 …… …… …… ……
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results are given in Table 3. Two orthotropic ratio values �EL /ET�
are investigated for a very thick plate. These results demonstrate
the effectiveness of the implemented plate models; in particular,
the LW analysis coincides with the 3D results. The CLT and
FSDT results by Reddy and Phan �51� are compared with the
present analyses in Table 4. Very thick and thin geometries have
been considered, and the material data and geometry are indicated
in Table 2. Table 4 shows that, for a thin plate �a /h=100�, the
differences between ESL and LW models decrease, and a lower
order of expansion can be applied. CLT and FSDT are inadequate
because they do not consider typical effects connected to multi-
layered composite plates such as in-plane and transverse aniso-
tropy. In these two assessments, attention has been restricted to
the fundamental frequency parameter.

4.2 Benchmarks Discussion. Frequencies related to higher
vibration modes have been discussed for two-plate problems.
These consist of two cross-ply laminated plates with the material
data and geometry indicated in Table 5. These plates were sug-
gested by EADS in the framework of the CASSEM EU project.
Benchmark 1 considers a 10-layered plate with a thickness ratio
a /h=1500, while benchmark 2 coincides with a 20-layered plate
with a thickness ratio a /h=375. Fiber orientation 0 deg/90 deg are
only considered for the sake of brevity. Further orientations are
not investigated because they do not introduce more remarks.

By assigning the number of waves �m ,n� in the two in-plane
directions �Fig. 9�, a number of modes, equal to the number of
degrees of freedom of the considered two-dimensional models,

are obtained. Tables 6 and 7 show the obtained results for the
following wave number values �m ,n�: �1,1�, �5,5�, �10,10�,
�50,50�, �100,100�, and �500,500�. These cases cover a large range
of frequencies, from low to higher modes. For the sake of brevity,
the complete set of frequencies is only given once, in correspon-
dence to the m=n=1 case. Since the number of frequencies differs
from theory to theory, a check is required to recognize the mode.
This can be done by plotting the three displacement components
in the thickness direction z. Figures 10–13 plot some modes for
the four considered theories in the case of a 10-layered plate with
m=n=50. For refined models, such as the ESL�N=4� and
LW�N=1�, there are other modes that have not been indicated in
Figs. 12 and 13, which are typical of these refined theories. These
modes are not considered in CLT and FSDT analyses. Frequencies
can be compared if and only if these refer to the same mode.
Comparing Fig. 12 �ESL�N=4�� and Fig. 13 �LW�N=1��, it is
clear that the corresponding modes are: 
̄=49.684 �ESL�N=4��
and 
̄=49.696 �LW�N=1��, 
̄=1155.1 �ESL�N=4�� and 
̄

=1154.9 �LW�N=1��, 
̄=1203.0 �ESL�N=4�� and 
̄=1203.0
�LW�N=1��, 
̄=5878.5 �ESL�N=4�� and 
̄=5900.2 �LW�N
=1��, 
̄=5865.6 �ESL�N=4�� and 
̄=5887.2 �LW�N=1��, and

̄=7613.4 �ESL�N=4�� and 
̄=7642.8 �LW�N=1��. The funda-
mental frequencies for each pair of wave numbers are underlined
in Tables 6 and 7. For low values of �m ,n�, there are no differ-
ences between CLT, FSDT, ESL�N=4�, and LW�N=1� for either
benchmark. If the in-plane waves number is increased, the differ-
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Fig. 10 Benchmark 1, ten-layered plate, m=n=50. Through the thickness z distribution of CLT modes.
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Fig. 11 Benchmark 1, ten-layered plate, m=n=50. Through the thickness z distribution of FSDT modes.
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Fig. 12 Benchmark 1, ten-layered plate, m=n=50. Through the thickness z distribution of first six ESL„N=4… modes „the
total number of modes is 15….
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Fig. 13 Benchmark 1, ten-layered plate, m=n=50. Through the thickness z distribution of first six LW„N=1… modes „the
total number of modes is 33….
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ences between classical theories �CLT and FSDT� and refined
models become more evident; these differences are larger for the
20-layered plate than the 10-layered one. These results are sum-
marized in Tables 8 and 9 and in Figs. 14 and 15, where these
differences are clearly shown. Table 8 shows that the differences
become critical ��1%� for a value of waves number �m=10, n
=50� that is larger than the case of Table 9 �m=5, n=10�; this
means that both the thickness ratio of the plate, and the number
and stacking of the layers are fundamental parameters of the con-

sidered problems. These considerations are confirmed by Figs. 14
and 15. It should be noticed that the error can be larger than 50%
for the higher modes related to high values of m and n.

5 Conclusions
A comparison between classical theories �classical lamination

theory and first-order shear deformation theory� and refined ones
�equivalent single layer with fourth-order of expansion and layer

Table 8 Benchmark 1, 10-layered plate, and a /h=1500. Fundamental frequency f in Hz for
different waves number. �%= �fCLT− fi / fCLT·100� is the difference between CLT and other
theories.

m ,n CLT FSDT �% ESL�N=4� �% LW�N=1� �%

1,1 2.98913 2.98913 �0.00� 2.98913 �0.00� 2.98913 �0.00�
1,2 8.56982 8.56982 �0.00� 8.56982 �0.00� 8.56982 �0.00�
2,1 8.56982 8.56982 �0.00� 8.56982 �0.00� 8.56982 �0.00�
2,2 11.9565 11.9565 �0.00� 11.9565 �0.00� 11.9712 �0.12�
5,5 74.7724 74.7724 �0.00� 74.7724 �0.00� 74.7724 �0.00�
5,10 214.172 214.039 �0.06� 214.010 �0.08� 214.010 �0.08�
10,5 214.172 214.039 �0.06� 214.010 �0.08� 214.010 �0.08�

10,10 299.104 298.898 �0.07� 298.839 �0.09� 298.883 �0.07�
10,50 5126.14 5044.27 �1.60� 5026.30 �1.95� 5026.89 �1.94�
50,10 5126.14 5044.27 �1.60� 5026.30 �1.95� 5026.89 �1.94�
50,50 7470.91 7343.69 �1.70� 7315.86 �2.07� 7317.62 �2.05�

100,100 29,800.0 27,928.5 �6.28� 27,554.5 �7.53� 27,572.1 �7.48�
500,500 685,792 350,391 �48.9� 326,330 �52.4� 326,890 �52.3�

Table 9 Benchmark 2, 20 layered plate, a /h=375. Fundamental frequency f in Hz for different
waves number. �%= �fCLT− fi / fCLT·100� is the difference between CLT and other theories.

m ,n CLT FSDT �% ESL�N=4� �% LW�N=1� �%

1,1 24.1486 24.1486 �0.00� 24.1486 �0.00� 24.1486 �0.00�
1,2 69.2606 69.1500 �0.16� 69.1500 �0.16� 69.1500 �0.16�
2,1 69.2606 69.1500 �0.16� 69.1500 �0.16� 69.1500 �0.16�
2,2 96.7100 96.5900 �0.12� 96.5900 �0.12� 96.5900 �0.12�
5,5 604.069 602.302 �0.29� 602.067 �0.33� 602.067 �0.33�
5,10 1730.22 1712.67 �1.01� 1709.25 �1.21� 1709.14 �1.22�
10,5 1730.22 1712.67 �1.01� 1709.25 �1.21� 1709.14 �1.22�

10,10 2415.33 2388.12 �1.13� 2382.82 �1.35� 2382.94 �1.34�
10,50 41,143.4 33,351.0 �18.9� 32,276.7 �21.6� 32,287.3 �21.5�
50,10 41,143.4 33,351.0 �18.9� 32,276.7 �21.6� 32,287.3 �21.5�
50,50 59,547.0 47,883.8 �19.6� 46,319.5 �22.2� 46,337.1 �22.2�

100,100 228,564 132,452 �42.1� 125,172 �45.2� 125,184 �45.2�
500,500 3,013,045 790,803 �73.7� 771,485 �74.4� 754,616 �74.9�
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Fig. 14 Benchmark 1, fundamental frequencies in Hz for the ten-layered plate. Comparison between CLT, ESL„N=4…, and
LW„N=1… results. The figure on the right is a zoom of the figure on the left side.
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wise with linear evaluation in z� has been addressed in this paper
for the free vibration response of simply-supported multilayered
composite plates. A closed-form solution has been discussed for a
10-layer and a 20-layered plate. A large range of frequencies
�from low to high values of in-plane wave numbers� has been
considered to show the importance of refined models in the nu-
merical evaluation of higher modes. It has been concluded that the
use of refined models is mandatory for higher mode evaluation
even though thin plate geometries are considered. The presented
results could be of some help to assess computational models,
such as the finite element method and SEA, for the analysis of
higher vibration modes in laminated plates.
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The Magnetic Viscous Damping
Effect on the Natural Frequency of
a Beam Plate Subject to an
In-Plane Magnetic Field
Several magnetic force models were developed to interpret various phenomena of a soft
ferromagnetic beam plate subjected to a uniform external magnetic field with different
incident angles. In this paper, a new transverse magnetic force model for the interface
between a ferromagnetic material and the air is derived with the continuation of magne-
toelastic stress across the material boundary. It is noted that both the normal and the
tangential components of magnetic field on the material boundary are considered in this
model. By applying such a transverse magnetic force and the effect of magnetic viscous
damping, a new theoretical model is constructed in this study to predict the natural
frequency of a soft ferromagnetic beam plate placed in an in-plane magnetic field. The
numerical results of the present study are displayed graphically and compared with the
experimental data, which appeared in literature to assure the exactness of the present
work. �DOI: 10.1115/1.3168602�

Keywords: magnetic viscous damping, magnetic force model, magnetoelasticity

1 Introduction
Due to the low rate of irradiation swelling, the ferromagnetic

structure made of ferrite steel was adopted as the first wall in a
fusion reactor. The interaction between the magnetic field and the
deformation of the structure is a relevant concern in such an en-
vironment of strong magnetic field. Several models of the mag-
netic force were developed by earlier investigators in studying the
magnetoelastic problem of a ferromagnetic plate. Moon and Pao
�1� applied the body couple model to explain the experimental
result for the magnetoelastic buckling of a cantilevered thin plate
in a transverse magnetic field. Using the formulation of magnetic
body force provided by Brown �2�, Pao and Yeh �3� derived a
linear theory and a magnetic force model to study the magneto-
elastic buckling problem of an infinite plate. Eringen �4� and Erin-
gen and Maugin �5� applied a different type of magnetic body
force to develop another magnetic force model, which was com-
patible with that addressed by Pao and Yeh �3� while the magnetic
field was perpendicular to a ferromagnetic plate. Sabir and Mau-
gin �6� adopted such a force model to study the fracture problem
of paramagnets and soft ferromagnets. Based on variational prin-
ciple, Zhou et al. �7� established a magnetic force model to ex-
plain the result of the magnetic buckling experiment conducted by
Moon and Pao �1�.

Takagi et al. �8� arranged an experiment to measure the change
in natural frequency for a thin plate subjected to an in-plane mag-
netic field. Based on variational principle, a new model of mag-
netic force to investigate the problem of in-plane magnetic field
was derived �9,10�. Such a model is different from those afore-
mentioned in dealing the problem of transverse magnetic field.
Zhou and Miya �10� used this model to obtain theoretical curves
for the natural frequency of beam plate under an in-plane mag-
netic field and compared the results with the experimental data
given by Takagi et al. �8�. Without considering the effect of mag-
netic viscous damping, their theoretical predictions of the natural

frequency concavely increase with the in-plane magnetic field but
the experimental data are convex curves. The magnetic viscous
damping was evoked by the coupling between transverse motion
of plate and in-plane magnetic fields. This effect was taken into
account by Takagi and Tani �11� when they studied the dynamic
behavior of a thin plate under a magnetic field composed of a
uniform in-plane component and a time-varying transverse part.
They applied a modal magnetic damping �MMD� method and
used a finite element method �FEM� to find the natural frequency
and the corresponding vibration mode. Lin �12� employed the
Galerkin method to consider the destabilizing effect of the mag-
netic viscous damping on the panel flutter. Notice that the afore-
mentioned investigators used FEM to determine the distribution of
magnetic field around a ferromagnetic beam plate because it is
difficult to obtain an analytic solution.

In this paper, a new magnetic force model is developed by
employing the continuation of magnetoelastic traction across the
boundary between the air and a ferromagnetic material. This
model contains the contribution of the tangential and normal com-
ponents of magnetic field on the boundary and has the resultant
form similar to that given by Zhou and Zheng �9�. Based on the
complex variable method in plane magnetoelasticity, the magnetic
field around an elliptic inclusion can be found in an analytic form
�13�. Such a distribution of magnetic field and the magnetic force
model derived from the present work are applied to study the
magnetoelastic problem of a beam plate with large slenderness
ratio. By applying Galerkin method and considering the magnetic
viscous damping effect on a beam plate, a theoretical formulation
for the variation in natural frequency on the in-plane magnetic
field is found. Since the difference in shape exists between an
elliptic inclusion and a plate of uniform thickness, it is necessary
to check the validity of magnetic field distribution assumed in this
study. By the comparison between the results of theoretical model
with an elliptic inclusion and that found from the FEM with a
beam plate of uniform thickness, the present approach is guaran-
teed to be a proper method. Furthermore, a pertinent parameter is
introduced to modify the distribution of magnetic force. In order
to illustrate the availability of the present approach, the theoretical
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predictions of the natural frequency will be presented in a graphi-
cal form and compared with the experimental data.

2 Natural Frequency of a Beam Plate Subjected to an
In-Plane Magnetic Field

The governing equation of static magnetic field can be ex-
pressed as

Bi,i = 0, eijkHk,j = 0 �1�

where Bi and Hk are the magnetic induction �or magnetic flux
density� and the magnetic intensity; eijk and �,� denote the permu-
tation symbol and the partial differential with respect to the space
variable, respectively.

The corresponding constitutive law takes the form

Bj = �0�Hj + Mj� = �0�rHj �2�
with

Mj = �Hj, �r = 1 + � �3�

where Mj denotes the magnetization, �0=4��10−7N /A2 is a uni-
versal constant, � and �r are the magnetic susceptibility and the
relative magnetic permeability, respectively. For linear soft ferro-
magnetic materials, ���102–105��1 �14�.

From the expression of magnetic body force proposed by
Brown �2�, Pao and Yeh �3� discarded the effect of magnetostric-
tion and obtained

tij,i + f j
M = 0 �4�

where

tij = �ij +
�0

�
MiMj, �ij = ��ijuk,k + G�ui,j + uj,i�, f j

M = �0MiHj,i

�5�

The symbol tij and �ij denote the magnetoelastic stresses and the
elastic stresses, � and G are Lamé’s constants, and �ij is the Kro-
necker delta. It is noted that f j

M indicates the magnetic body force.
For an interface between the air �or vacuum� and a ferromagnetic
material, the magnetic field quantities in the air and the material
are remarked by superscripts �1� and �2�, respectively. Since there
are no displacement and magnetization in the air, tij

�1�=0 can be
found. Furthermore, the replacement of Mi

�1� with �Bi
�1�

−�0Hi
�1�� /�0 can be concluded from Eq. �2�. Therefore, the mag-

netic body force in the air becomes

f j
M�1� = �Bi

�1� − �0Hi
�1��Hj,i

�1� = Bi
�1�Hj,i

�1� − �0Hi
�1�Hj,i

�1� = �Bi
�1�Hj

�1��,i

− Bi,i
�1�Hj

�1� − �0Hi
�1�Hi,j

�1� = �Bi
�1�Hj

�1� −
1

2
�0Hk

�1�Hk
�1��ij�

,i

= tij,i
M�1� �6�

where

tij
M�1� = Bi

�1�Hj
�1� − 1

2�0Hk
�1�Hk

�1��ij �7�

denotes the Maxwell stress �3�. Notice that the total stress tij
T is

defined as the sum of the magnetoelastic stress and the Maxwell
stress, i.e., tij

T = tij + tij
M. In the derivation of Eq. �6�, the relations

Bi,i
�1�=0 and Hj,i

�1�=Hi,j
�1�, which can be deduced from Eq. �1�, are

adopted. Alternatively, the magnetic body force in the ferromag-
netic material can be written as

f j
M�2� = �0Mi

�2�Hj,i
�2� = �0�2Hi

�2�Hj,i
�2� = �0�2Hi

�2�Hi,j
�2�

= ��0�2

2
Hk

�2�Hk
�2��ij�

,i
�8�

In earlier studies, several investigators criticized the adoption of
Maxwell stress. McMeeking and Landis �15� and Suo et al. �16�
obtained the total stress from the derivative of free energy for the

electrostatic problem. This means that the total stress can be ob-
tained from the equation like the constitutive law instead of ap-
plying the Maxwell stress derived from the electromagnetic body
force. Although the necessity of the Maxell stress is questioned in
the above papers, nevertheless, the results of total stress remain
the same as the summation of the Cauchy stress and the Maxwell
stress. Furthermore, Rinaldi and Brenner �17� denoted that replac-
ing the effect of magnetic body force fM, as shown in Eq. �5�, with
the Maxwell stress may cause disconformity in torque, the rate of
working and rate of mechanical energy exchange for the case of
ferrofluid flows with asymmetric Maxwell stress tensor. Since the
present work is a static problem with linear isotropic magnetic
materials, the Maxwell stress tensor is symmetric and the four
quantities �force, torque, rate of working, and rate of mechanical
energy exchange� in Eqs. �2.4a-d� given by Rinaldi and Brenner
�17� equal zero. Thus the error caused by using the Maxwell stress
tensor to replace the effect of magnetic body force vanishes in this
study. Despite the criticism on the essentiality of introducing the
Maxwell stress, the total stress, which is the sum of the magneto-
elastic stress tij in Eq. �5� and the Maxwell stress tij

M in magneto-
elastic problem, is still valid just like the case of electrostatic
problem with dielectric solid. Therefore, the usage of Maxwell
stress is just an intermediate mathematic procedure in obtaining
the total stress rather than try to separate the effect between the
elastic and magnetic loading. Thus the expression of total stress
and the following derivation in this work can be applied.

By employing Eqs. �4� and �6�–�8�, the continuation of the sur-
face tractions tij

Tni across the interface between air and material
gives rise to

�tij
�2� +

�0�2

2
Hk

�2�Hk
�2��ij�ni = �Bi

�1�Hj
�1� −

1

2
�0Hk

�1�Hk
�1��ij�ni �9�

where ni is the unit normal vector on the material surface. Hence
the equation

tnn
�2� +

�0�2

2
��Hn

�2��2 + �Ht
�2��2� = Bn

�1�Hn
�1� −

�0

2
��Hn

�1��2 + �Ht
�1��2�

�10�

can be found. In which the subscripts n and t indicate the normal
and tangential components on the boundary. Via the use of Eq. �2�
and the continuation of magnetic field across the interface, one
can obtain

Bn
�1� = Bn

�2�, Ht
�1� = Ht

�2�, Bn
�1� = �0Hn

�1�, Bn
�2� = �0�r2Hn

�2�

�11�

By substituting Eq. �11� into Eq. �10�, the normal stress on the
material surface can be found as

tnn
�2� = Bn

�1�Hn
�1� −

�0

2
��Hn

�1��2 + �Ht
�1��2� −

�0�2

2
��Hn

�2��2 + �Ht
�2��2�

=
1

�0
�Bn

�1��2 −
�0

2
��Bn

�1�

�0
�2

+ �Ht
�2��2	 −

�0�2

2
��Hn

�2��2 + �Ht
�2��2�

=
�0

2
��Bn

�2�

�0
�2

− �Ht
�2��2	 −

�0�2

2
��Hn

�2��2 + �Ht
�2��2�

=
�0��r2

2 − �2�
2

�Hn
�2��2 −

�0�r2

2
�Ht

�2��2 =
�0��r2�2 + 1�

2
�Hn

�2��2

−
�0�r2

2
�Ht

�2��2 �12�

Such a magnetoelastic stress component, which is evoked by the
discontinuity of material properties across the boundary, can be
viewed as the normal stress acting on the material surface. Thus
the transverse magnetic force qn�x� equals the magnetoelastic
stress component tnn

�2�. Therefore, Eq. �12� can be approximated by
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qn�x� = n · t = tnn
�2� 


�0�r2�2

2
�Hn

�2��2 −
�0�r2

2
�Ht

�2��2 �13�

for a soft ferromagnetic material with high relative magnetic per-
meability ��r���1�. The symbols n and t denote unit normal
vector and stress tensor, respectively, on the material surface. This
formulation is close to the result

qn�x� 

�0�r2�2

2
�Hn

�2��2 −
�0�2

2
�Ht

�2��2 �14�

derived by Zhou and Zheng �9� and Zhou and Miya �10� with the
variational principle.

Consider a ferromagnetic cantilevered beam plate subjected to
an in-plane magnetic induction, as shown in Fig. 1. Since the
beam plate is placed horizontally, only the x component B0x of
magnetic induction exists. In this figure, both domains of the air
matrix and the beam plate are denoted by 	1 and 	2, respectively.
The equation of motion for the beam plate with length L, thick-
ness h, and density 
 can be expressed as

D
�4w

�x4 − Nx

�2w

�x2 −
�Nx

�x

�w

�x
= − 
h

�2w

�t2 + qy
m�x� + qy

L�x� 0 � x � L

�15�

where w is the transverse deflection and

D = Eh3/12�1 − �2� �16�

is the flexural rigidity of the plate with Young’s modulus E and
Poisson’s ratio �. Furthermore, the symbol Nx indicates the in-
plane force on the beam plate, qy

m�x� and qy
L�x� are the transverse

magnetic force and Lorentz force. The corresponding boundary
conditions of Eq. �15� are

w =
�w

�x
= 0 for x = 0 �17�

and

�2w

�x2 =
�3w

�x3 = 0 for x = L �18�

Now the resultant magnetic force acting on the boundary of
material can be obtained from Eq. �12� as

qy
m�x� = �tyy

�2��y=h/2 − tyy
�2��y=−h/2� =

�0��r2�2 + 1�
2

��Hy
�2��x,h/2��2

− �Hy
�2��x,− h/2��2
 −

�0�r2

2
��Hx

�2��x,h/2��2 − �Hx
�2��x,

− h/2��2
 �19�

Here the superscript �2� in Hj
�2��j=x ,y� and the subscript 2 in �2

and �r2 indicate that those quantities are on the domain 	2 of
beam plate.

It is known that the coupling between the transverse motion of
beam plate and the applied in-plane magnetic induction will gen-
erate conducting current density �12�

J = 
�v � B� �20�

on the plate, where 
 and v are the electric conductivity and the
velocity of the plate and B denotes the applied in-plane magnetic
induction. For the present study, it is convenient to assume

v =
�w

�t
ey, B = Bxex + Bueu �21�

The symbols ex, ey, and eu are unit bases of the coordinate system.
Then the Lorentz force fL�=fx

Lex+ fy
Ley� per unit volume can be

found as

fL = J � B = 
�v � B� � B = 
��v · B�B − v�B · B�� �22�

Substituting Eq. �21� into Eq. �22� and integrating over the plate
yield

qx
L�x� =�

x

L

fx
Ldx = 
��

x

L

B0xBy
�2��s,0�ds	 �w

�t

qy
L�x� =�

−h/2

h/2

fy
Ldy = − 
��

−h/2

h/2

B0x
2 dy� �w

�t
= − 
hB0x

2 �w

�t

�23�

Here B0x is the applied magnetic induction, as shown in Fig. 1.
The magnetic body force f j

M�2� in Eq. �8� will cause an in-plane
magnetic force on the beam plate as

qx
m�x� =�

x

L�
−h/2

h/2

fx
M�2��x̂,y�dydx̂ �24�

where

fx
M�2� =

�0�2

2

�

�x
��Hx

�2��x,y��2 + �Hy
�2��x,y��2
 �25�

is the magnetic body force directed along the x-direction. Com-
bining the magnetic force in Eq. �24� and the Lorentz force in Eq.
�23�, one can find the in-plane magnetic force Nx as

Nx�x� = qx
m�x� + qx

L�x� �26�

In employing the Galerkin method, the transverse deflection can
be expressed as

w�x,t� = �ŵ�x�ei�t �27�

In which � is a small positive constant and ŵ�x� is the normalized
eigenfunction corresponding to the natural frequency � �10�. The
deformation in Eq. �27� leads to the transformation between coor-
dinate ŷ in the deformed state and the coordinate y in the unde-
formed state as follows:

ŷ = y + aŵ�x�ei�t �28�

Therefore, the magnetic field on the deformed state and that on the
undeformed state can be related by

Hk
�2��x, ŷ� = Hk

�2��x,y� + �
�Hk

�2��x,y�
�y

ŵ�x�ei�t + O��2� k = x,y

�29�

Those terms with order 2 and higher order of � can be neglected
in the following derivations.

With the boundary conditions of magnetic field as

�0�r2Hy
�2��x, ŷ�� = By

�2��x, ŷ�� = By
�1��x, ŷ�� = �0Hy

�1��x, ŷ�� ,

Hx
�2��x, ŷ�� = Hx

�1��x, ŷ�� �30�

on the surface of the deformed beam plate, the magnetic force in
Eq. �19� can be found by the use of Eq. �29�. It renders

Fig. 1 A ferromagnetic cantilevered beam plate in an in-plane
magnetic induction
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qy
m�x� 
 −

�0�r2

2
��Hx

�2��x, ŷ+��2 − �Hx
�2��x, ŷ−��2



 −
�0�r2

2
��Hx

�2��x,h/2� + �ŵ�x�ei�t� �Hx
�2�

�y
�

y=h/2
	2

− �Hx
�2��x,− h/2� + �ŵ�x�ei�t� �Hx

�2�

�y
�

y=−h/2
	2�

= −
�0�r2

2
��Hx

�1��x,h/2� + �ŵ�x�ei�t� �Hx
�1�

�y
�

y=h/2
	2

− �Hx
�1��x,− h/2� + �ŵ�x�ei�t� �Hx

�1�

�y
�

y=−h/2
	2� �31�

in which h=2b is used and those terms with order 2 and higher
order of � are neglected. The symbols ŷ�= �h /2+�ŵ�x�ei�t rep-
resent y coordinate of the upper and the lower surfaces of the
beam plate on the deformed state. Without loss of generality, the
magnetic field Hx

�1� can assumed to be presented in a form as

Hx
�1��x,y� = U + Vy + O�y2� 
 U + Vy �32�

with

V =
�Hx

�1��x,y�
�y

= Hx,y
�1��x,y� �33�

and the higher order of y can be neglected due to y�h /2 in the
present consideration. Putting Eq. �32� into Eq. �31� and dropping
the terms with order 2 of � yield

qy
m�x� 
 �q̂y

m�x�ei�t �34�

where

q̂y
m�x� = − �0�r2hŵ�x�V2 
 − �0�r2hŵ�x��Hx,y

�1��x,y��2

= − �0�r2hŵ�x��Hx,y
�2��x,y��2 �35�

The Lorentz force in Eq. �23� can be manipulated by the use of
Eq. �27�. It gives

qy
L�x� 
 �q̂y

L�x�ei�t �36�

with

q̂y
L�x� = − i�
hB0x

2 ŵ�x� �37�
In order to illustrate the application of this approach, let us

apply the above formulation to a ferromagnetic cantilevered beam
plate subjected to an in-plane magnetic field. Substituting Eqs.
�27�, �34�, and �36� into Eq. �15�, one can obtain the eigenvalue
equation of ŵ�x� as

D
�4ŵ�x�

�x4 − Nx�x�
�2ŵ�x�

�x2 −
�Nx�x�

�x

�ŵ�x�
�x

= 
h�2ŵ�x� + q̂y
m�x�

+ q̂y
L�x�, 0 � x � L �38�

where the quantities q̂y
m�x� and q̂y

L�x� can be found from Eqs. �35�
and �37�, respectively. As denoted in Eq. �26�, the in-plane force
Nx�x� is the summation of qx

m�x� and qx
L�x�. The corresponding

boundary conditions of Eq. �38� can be written as

ŵ�x� =
�ŵ�x�

�x
= 0 for x = 0 �39�

and

�2ŵ�x�
�x2 =

�3ŵ�x�
�x3 for x = L �40�

By applying the Galerkin method, the corresponding natural fre-
quency of Eq. �38� for a beam plate under an in-plane magnetic
field can be expressed as

�2 = �1
2 +

1

�
�

0

L

Nx�x��dŵ�x�
dx

	2

dx −
1

�
�

0

L

q̂y
m�x�ŵ�x�dx

−
1

�
�

0

L

q̂y
L�x�ŵ�x�dx 
 �1

2 − QM + iQL� �41�

where

QM =
1

�
�

0

L �q̂y
m�x�ŵ�x� − Nx�x��dŵ�x�

dx
	2�dx, QL =






B0x

2 ,

� = 
h�
0

L

�ŵ�x��2dx �42�

and

�1
2 =

1

�
�

0

L

D
d4ŵ�x�

dx4 ŵ�x�dx

ŵ�x� = �sin �x − sinh �x� +
�cos �L + cosh �L�
�sin �L − sinh �L�

�cos �x − cosh �x�

�43�

The symbols ŵ�x� in Eq. �39� and �1 in Eq. �41� represent the
natural frequency and the corresponding eigenfunction �or mode
shape� of the transverse deflection for a beam plate free from any
magnetic loading. For the vibration of a cantilevered plate, the
eigenfunction ŵ�x� in Eq. �43� was derived by Meirovitch �18�.
The natural frequency of a beam plate subjected to an in-plane
magnetic field can be solved from Eq. �41� as

� = �R + i�I =
iQL � �4��1

2 − QM� − �QL�2

2
�44�

in which the real part �R indicates the frequency of the beam plate
and the imaginary part �I is related to the amplitude of beam plate
vibration. Therefore, only �R is relevant in the following numeri-
cal examples about the natural frequency. It is convenient to in-
troduce the following quantities:

d1 =
1

�
�

0

L

q̂y
m�x�ŵ�x�dx, d2 =

1

�
�

0

L

Nx�x��dŵ�x�
dx

	2

dx

�45�

which are the two terms in QM that appeared in Eq. �42�. The
estimation d2�d1 was concluded by Zhou and Miya �10� with
finite element method and can also be found with the estimation in
the Appendix. It is remarked that the contribution of the in-plane
force Nx�x� on the change in natural frequency is insignificant and
then can be discarded in the following numerical illustrations.
Thus

QM 

1

�
�

0

L

q̂y
m�x�ŵ�x�dx �46�

Referring to Eq. �35�, one can find that such a term is related to
the differentiation Hx,y

�1��x� of magnetic field.
For a typical spring-damper-mass system, the characteristic pa-

rameter s on the displacement u= ûest satisfies

s =
− c � �c2 − 4mk

2m
=

− c

2m
��� c

2m
�2

−
k

m

=
− c

2m
� i� k

m
− � c

2m
�2

�47�

The damping ratio can be defined as
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� =
c

2m�
=

c

2m�k/m
�48�

By comparing Eq. �44� with Eq. �47� and using s= i�, the corre-
sponding damping ratio for the present problem takes the form

� =
QL/2

��1
2 − QM

�49�

3 Approximation of Magnetic Field Distribution
Since it is difficult to obtain the distribution of magnetic field

on the beam plate subjected to an in-plane magnetic induction by
an analytic method, the magnetic field in an approximated case is
introduced in the following paragraph. By applying the complex
variable method in-plane magnetoelasticity �19�, Lin �13� solved
the magnetoelastic problem with an elastic elliptic inclusion. The
magnetic fields at the point z��=x�+ iy�� are provided in that study
as

Hx
�1� + iHy

�1� =
Bx

�1� + iBy
�1�

�0�r1
= h1��z

�� = � ḡ

2
+

�̄

a − b
� + � ḡ

2

−
�̄

a − b
� z�

�z�2 − �a2 − b2�
�50�

on the matrix and

Hx
�2� + iHy

�2� =
Bx

�2� + iBy
�2�

�0�r2
= h2��z

�� =
2m̄1

a + b
�51�

on the soft ferromagnetic elliptic inclusion with the major semi-
axis a and minor semi-axis b, as shown in Fig. 2. Here the origin
of the coordinate �x� ,y�� is located at the center of the inclusion
and the quantities on the matrix and the inclusion are indicated by
the superscripts �1� and �2� as denoted in the previous section. In
Eqs. �50� and �51�, the overhead bar �—� means the complex
conjugate and the symbols g, �, and m1 are given as

g =
B0e−i�

�0�r1
, � =

�r1 − �r2

�r1 + �r2

a + b

2
ḡ +

2�r2

�r1 + �r2
pm1

m1 =
�r1���r2 + �r1�g�a + b� + ��r2 − �r1�ḡ�a − b��

��r2 + �r1�2 − ��r2 − �r1�2p2 �52�

where

p =
a − b

a + b
�53�

and the symbol � is the angle between the incident direction of
magnetic induction and the x-axis. In the case of in-plane mag-
netic induction, we can assign �=0 in this paper. Now the matrix
is composed of air, and �r1=1 can be taken. Since the magnetic
force on the plate is applied via the upper and the lower surfaces
in the present study, it is pertinent to consider the magnetic field
on the matrix �	1� in the following derivation. Taking z�=x�

+ iy�= �x−a�+ iy and a�b ,y for a slender inclusion, we have

1

�z�2 − �a2 − b2�
= �− �x�2a − x�2 + y2 − b2 + 2i�x − a�y�
−1/2



− �x − a�y

�x�2a − x��3/2 − i
1

�x�2a − x��1/2 �54�

Substituting Eqs. �52�–�54� into Eq. �50� and taking B0e−i�=B0x,
�r1=1 for a thin beam plate under an in-plane magnetic field give
rise to

Hx
�1� + iHy

�1� 
 �A −
Ca2y

�x�2a − x��3/2 − i
C�x − a�

�x�2a − x��1/2�B0x

�0

�55�

with

A =
1

�a − b��a − b�r2

1 + �r2

+
4p�r2��r2a + b�

��r2 + 1����r2
2 + 1��1 − p2� + 2�r2�1 + p2���

C =
1

�a − b��a�r2 − b

1 + �r2

−
4p�r2��r2a + b�

��r2 + 1����r2
2 + 1��1 − p2� + 2�r2�1 + p2��� �56�

Putting Eq. �55� into Eq. �35� with L=2a and dropping the terms
with order 2 of � and those terms, which is not related to the
dynamic property of the beam plate, yield

q̂y
m�x� 
 − �0�r2hŵ�x��Hx,y

�1��x��2 
 −
L4C2h

16�x�L − x��3 ŵ�x�
�r2B0x

2

�0

�57�

with

Hx,y
�1��x� 
 −

Ca2

�x�2a − x��3/2
B0x

�0
= −

CL2

4�x�L − x��3/2
B0x

�0
�58�

It is observed that only the coefficient C remains in q̂y
m�x� and the

last approximation in Eq. �57� can be concluded by the use of Eq.
�55�.

The distribution of magnetic field in Eq. �55� is derived from
the case of elliptic inclusion. Notice that the thickness at a point
near both edges of a thin elliptic inclusion �i.e., b�a� is much
smaller than that on the central region. This feature is different
from a beam plate of a uniform thickness. In order to verify the
introduction of elliptic beam plate as an approximate case is ad-
equate for the present problem, a finite element analysis of mag-
netic field with package software ANSYS is provided. The diagram
of material number for the finite element model is shown in Fig. 3.
In this model, the element type “PLAN13” is adopted and the
elements with material numbers 1 and 2, which denote the air and
the beam plate, respectively. It is noted that the fixed end is as-
sumed to be made of a diamagnetic material �i.e., �r
1�. There-
fore, both the fixed end and the air have similar magnetic proper-
ties and can apply the same material number in the FEM model of
magnetic analysis. Following the experiment data conducted by
Takagi et al. �8�, the geometry size of the beam plate is taken as
L=100 mm and h=0.29 mm or 0.5 mm. It is assigned that the
thickness of air layer above �or below� the beam plate is 20 times
as much as the thickness of beam plate. For the sake of clear
presentation, the vertical size of the element in Fig. 3 is amplified
by a factor of 5. A magnetic loading with vector potential +1 on
the upper edge and �1 on the lower edge of the present model is
applied. From the finite element analysis with the above descrip-
tion, the distribution of magnetic field on the air matrix and beam

Fig. 2 A ferromagnetic cantilevered elliptic beam plate in an
in-plane magnetic induction
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plate is displayed with vectors, as shown in Fig. 4. In Fig. 4�a�,
�r1=�r2=1 is taken and the magnetic field is uniform with arrow-
head directed to the right. Alternatively, �r1=1 and �r2=12 �i.e.,
�2=11� is adopted in Fig. 4�b� and then the lines of the applied
magnetic field �or induction� are observed to be attracted by the
beam plate with higher relative magnetic permeability. The value
of magnetic field obtained from Fig. 4�b� can be divided by the
uniform value from Fig. 4�a� and then the normalized magnetic
field Hx

�1��x� / �B0x /�0� can be found. It is noted that B0x /�0 has a
constant value.

As presented in Eq. �35�, the term Hx,y
�1��x� is dominant in ob-

taining the magnetic force q̂y
m�x�, which is relevant in this study.

The normalized differentiations Hx,y
�1��x� / �B0x /�0� of magnetic

field obtained from both the finite element analysis and Eq. �58� of
this study with L /h=100 /0.29 and L /h=100 /0.5 are depicted in
Figs. 5�a� and 5�b�, respectively. In these figures, the notation
Hx,y

�1��x� / �B0x /�0� denotes the differentiation of magnetic field on
the air near the surface of the beam plate. It is viewed that the
results of present theoretical analysis are close to that of the finite

element analysis with ANSYS.
From Figs. 5�a� and 5�b�, the derivative of magnetic field in Eq.

�58� for a beam plate with elliptic shape possesses singularity on
both edges of beam plate but that from finite element analysis
keeps finite on both edges of a beam plate with uniform thickness.
Such a feature is evoked by the difference in shape between an
elliptic beam and a beam of uniform thickness. Therefore, a pa-
rameter xr is recommended to conduct the available area of Eq.
�58�, as shown in Fig. 5�b�. In other words, Eqs. �35� and �58� are
workable for the range �1−xr� /2�X /L� �1+xr� /2. For example,
xr=0.95 indicates the range 0.025�X /L�0.975. If the value of
X /L lies outside this range, the differentiation Hx,y

�1��x� of magnetic
field and the magnetic force q̂y

m�x� are assumed to be uniform as
the dotted lines in Fig. 5�b� on both ends of the beam plate, and
then the curves of q̂y

m�x� �also Hx,y
�1��x�� keep continuous. Obvi-

ously, such a modification is also valid in Fig. 5�a� for the beam
plate with different thicknesses. Thus the expression of q̂y

m�x� in
Eq. �35� can be modified as follows:

q̂y
m�x� =��

−
4C2h

�1 − xr
2�3L2 ŵ�x��x=�1−xr�L/2	�r2B0x

2

�0
for x �

�1 − xr�L
2

−
L4C2h

16�x�L − x��3 ŵ�x�
�r2B0x

2

�0
for

�1 − xr�L
2

� x �
�1 + xr�L

2

�−
4C2h

�1 − xr
2�3L2 ŵ�x��x=�1+xr�L/2	�r2B0x

2

�0
for x �

�1 + xr�L
2

� �59�

Here the magnetic force is continuous at the points x
= �1�xr�L /2 and becomes uniform when x� �1−xr�L /2 and x
� �1+xr�L /2. The parameter xr, which governs the applicable
range of Eqs. �35�, �58�, �A1�, and �A4�, can be found via the use
of experiment results provided by Takagi et al. �8� in Sec. 4.

4 Numerical Results

In order to guarantee that the present approach is meaningful,
the numerical results of this work will be provided and compared
with the data provided in the previous study. The corresponding
eigenvalue �L=1.875 for the eigenfunction presented in Eq. �43�

Fig. 3 The material number for a FEM model of a beam plate on the in-
plane magnetic induction
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is given by Meirovitch �pp. 161–166 of Ref. �18�.�. With the ma-
terial properties given as 
=7800 kg /m3, 
=2,300,000 S /m,
�2=7–15, and L=100 mm, the relevant experimental data pro-
vided in Ref. �8� are presented in Fig. 6�a� for h=0.29 mm and
h=0.5 mm for Fig. 6�b�. By taking �2=11, the material data �

and 
� and the geometry data �L and h�, which are presented
above, the theoretical predictions of this study for the variation in
natural frequency on the magnetic induction and the results given
by Zhou and Miya �10� with theoretical method are also depicted
in these figures. The range of xr is 0.95–0.965 with L /h
=100 /0.29 in Fig. 6�a� and xr=0.92–0.935 for L /h=100 /0.5 in
Fig. 6�b�. For a fixed value of the applied magnetic induction B0x,
the increase in natural frequency with xr can be observed from
Fig. 6. Since xr conducts the available range for the distribution of
magnetic field derivative in Eq. �58� with singularity on both

edges of the thin elliptic inclusion, the higher value of xr may
cause higher transverse magnetic force q̂y

m�x� and higher value of
natural frequency �R.

The variation in natural frequency on the applied magnetic in-
duction under different values of �2 is presented in Fig. 7. In this
figure, the parameter xr is chosen as 0.955 with L /h=100 /0.29 in
Fig. 7�a� and xr=0.925 with L /h=100 /0.5 in Fig. 7�b�. It is ob-
served that the natural frequency increases with �2 under a fixed
value of the applied magnetic induction.

In order to understand the damping character of the present
problem, the variation in damping ratio presented in Eq. �49� on
the applied magnetic induction is provided in Fig. 8 with the same
L /h ratio and xr as that given in Fig. 6. The corresponding experi-
mental results in Ref. �8� and the theoretical predictions in Ref.

Fig. 4 The FEM output for the distribution of magnetic field on a cantile-
vered beam plate subjected to an in-plane magnetic induction: „a… �r1=�r2
=1 and „b… �r1=1, �r2=12
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�10� are also shown in this figure. One can find that the damping
ratio will decrease with the increase in the value of parameter xr
and the deviation between the damping ratio obtained from this
study and the experiment increases with the increase in the ap-
plied magnetic induction B0x.

5 Discussion
Without including the effect of magnetic viscous damping,

Zhou and Miya �10� obtained concave curves for the variation in
natural frequency on the strength of applied magnetic induction
by theoretical method rather than the convex curves in the experi-
mental data, as shown in Fig. 6. Furthermore, larger slenderness
ratio of beam plate may make the derivative of magnetic field in
Eq. �58� and the result of finite element analysis closer to each
other, as shown in Fig. 5, and will result in higher xr, as presented
in Fig. 6. Alternatively, the theoretical curves in Fig. 6 are concave
when the applied magnetic induction B0x increases from 0 T up to
0.6 T and becomes convex for further increase in B0x. The convex
feature of the theoretical curves on higher strength of the applied
magnetic induction is evoked by the magnetic viscous damping
effect of Lorentz force. Therefore, the deviation between the ex-
perimental data and the present theoretical results is small when
the value of applied magnetic induction is below 2 T. If the vis-
cous damping effect of Lorentz force is discounted, the theoretical
curves become pure concave and can be used to compare with
experimental ones up to B0x=1 T. Such a feature is similar to that
derived from Ref. �10�.

Referring to Eqs. �35� and �42� and Fig. 5, it is found that
higher xr may cause higher value of �1

2−QM and the value of
damping ratio is reduced, as shown in Fig. 8. Without considering

the damping effect of Lorentz force or taking higher value of xr
will make the theoretical curve of damping ratio and that of ex-
periment data more close, as shown in Fig. 8, but the convex
feature for the theoretical curves of frequency becomes unobvi-
ous, as presented in Fig. 6. Thus the difference in frequency be-
tween the theoretical and the experimental results is magnified for
higher value of B0x. The deviation between the theoretical predic-
tions and the experimental results, as shown in Fig. 8, may be
caused by approximating a beam of uniform thickness with an
elliptic beam. Nevertheless, the damping feature of the present
problem can be characterized in this study. Furthermore, it is re-
marked that taking xr=0.955 for the case of h=0.29 mm and xr
=0.925 for h=0.5 mm with �2=11 in the present approach can
yield proper predictions for the frequency of a beam plate sub-
jected to an in-plane magnetic field up to 2 T.

6 Concluding Remarks
In this paper, a compact theoretical approach is developed to

investigate the natural frequency of a beam plate subjected to an
in-plane magnetic field. By applying the new magnetic force
model developed in this paper and the distribution of magnetic
field deduced from the complex variable method for the elliptic
inclusion problem and considering the magnetic viscous damping
effect of Lorentz force, the natural frequency of beam plate can be
predicted. The Galerkin method is adopted to determine the nu-
merical value of natural frequency. A parameter governing the
available range for the distribution of magnetic field and magnetic
force on an elliptic inclusion is introduced in the theoretical cal-
culation to modify the deviation of magnetic field and magnetic
force caused by the shape difference between an elliptic inclusion

Fig. 5 The normalized differentiation Hx,y
„1…
„x… / „B0x /�0… of mag-

netic field for a cantilevered beam plate on an in-plane mag-
netic induction: „a… L /h=100/0.29 and „b… L /h=100/0.5

Fig. 6 The variation in natural frequency of a cantilevered
beam plate on the in-plane magnetic induction with �2=11: „a…
L /h=100/0.29 and „b… L /h=100/0.5
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and a beam plate of uniform thickness. It is noted that the theo-
retical results obtained in the present study are close to the experi-
mental data when the magnetic induction increases from 0 T up to
2 T. Furthermore, the convex character of the theoretical curve can
be also found. Such a result is compatible with the experimental
measurement.
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Appendix
Applying Eqs. �24�, �25�, �30�, and �55� with the aforemen-

tioned notations ŷ�= �h /2+�ŵ�x�ei�t on the deformed plate sur-
faces, we can obtain

qx
m�x� =

�0�r2

2 �
x

L�
ŷ−

ŷ+ �

� x̂
��Hx

�2��x̂, ŷ��2 + �Hy
�2��x̂, ŷ��2
dŷdx̂

=
�0�r2

2 �
x

L
�

� x̂
�

ŷ−

ŷ+

��Hx
�2��x̂, ŷ��2 + �Hy

�2��x̂, ŷ��2
dŷdx̂

=
�0�r2

2 �
x

L
�

� x̂
�Gx

�2��x̂, ŷ+� − Gx
�2��x̂, ŷ−� + Gy

�2��x̂, ŷ+�

− Gy
�2��x̂, ŷ−��dx̂ =

�0�r2

2 �
x

L
�

� x̂
�Gx

�1��x̂, ŷ+� − Gx
�1��x̂, ŷ−�

+
1

�r2
2 �Gy

�1��x̂, ŷ+� − Gy
�1��x̂, ŷ−���dx̂


 − �� ŵ�x̂�
�x̂�L − x̂��3/2�

x̂=x

L ��ACL2h

4

�r2B0x
2

�0
ei�t �A1�

Here, those terms that do not relate to the plate motion are dis-
carded. The function Gk

�2��x ,y� satisfies

�Gk
�2��x,y�
�y

= �Hk
�2��x,y��2 k = x,y �A2�

and hence the expansion

Gk
�2��x, ŷ� = Gk

�2��x,y� + �
�Gk

�2��x,y�
�y

ŵ�x�ei�t + O��2� 
 Gk
�2��x,y�

+ ��Hk
�2��x,y��2ŵ�x�ei�t k = x,y �A3�

can be derived by employing Eq. �28�. Notice that Eq. �A3� is
applied in the derivation of Eq. �A1�. Since Hx�x ,y� is continuous
across the upper and the lower surfaces of the plate as denoted in
Eq. �30�, it is reasonable to assume Gx

�2��x , ŷ��=Gx
�1��x , ŷ��. The

function Gx
�1��x , ŷ�� can be obtained by replacing the superscript

�2� in Eq. �A2� with the superscript �1�.
By the use of Eqs. �2�, �23�, �27�, �55�, and �56�, the component

qx
L�x� of Lorentz force is found as

Fig. 7 The variation in natural frequency of a cantilevered
beam plate on the in-plane magnetic induction: „a… L /h
=100/0.29 with xr=0.955 and „b… L /h=100/0.5 with xr=0.925

Fig. 8 The variation in damping ratio of a cantilevered beam
plate on the in-plane magnetic induction with �2=11: „a… L /h
=100/0.29 and „b… L /h=100/0.5
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qx
L�x� = 
B0x��

x

L

By
�2��s,0�ds	 �w

�t

 
B0x��

x

L

By
�2��s,h/2�ds	

��i��ŵ�x�ei�t� = 
B0x��
x

L

By
�1��s,h/2�ds	�i��ŵ�x�ei�t�

= i��
B0x
2 ��

x

L

−
C�s − L/2�

�s�L − s��1/2ds	�ŵ�x�ei�t� =

− i��
�r2C�x�L − x��1/2B0x
2 �ŵei�t� �A4�

in which the approximation By
�2��s ,0�
By

�2��s ,h /2� is deduced
from that the variation in the magnetic field along the transverse
direction of a very thin plate is not abrupt.

By the use of Eqs. �24�, �25�, �36�, �37�, �43�, �58�, �A1�, �A2�,
and �A4�, the estimation d2�d1 can be concluded.
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Diagnostic-Photographic
Determination of Drag/Lift/Torque
Coefficients of a High Speed
Rigid Body in a Water Column
Prediction of a rigid body falling through water column with a high speed (such as Mk-84
bomb) needs formulas for drag/lift and torque coefficients, which depend on various
physical processes such as free surface penetration and bubbles. A semi-empirical
method is developed in this study to determine the drag/lift and torque coefficients for a
fast-moving rigid body in a water column. The theoretical part is to derive the relation-
ships (called diagnostic relationships) between (drag, lift, and torque) coefficients and
(position and orientation) of the rigid body from the three momentum equations and the
three moment of momentum equations. The empirical part is to collect data of trajectory
and orientation of a fast-moving rigid body using multiple high-speed video cameras
(10,000 Hz). Substitution of the digital photographic data into the theoretical relation-
ships leads to semi-empirical formulas of drag/lift and torque coefficients, which are
functions of the Reynolds number, attack angle, and rotation rate. This method was
verified by 1/12th Mk-84 bomb strike experiment with various tail configurations (tail
section with four fins, two fins, and no fin and no-tail section) conducted at the SRI test
site. The cost of this method is much lower than the traditional method using the wind
tunnel. Various trajectory patterns are found for different tail configurations.
�DOI: 10.1115/1.3173767�

Keywords: body-flow interaction, drag coefficient, lift coefficient, torque coefficient, fast
rigid body in water column, diagnostic-photographic method

1 Introduction
Prediction of a fast-moving rigid body in a water column has

wide scientific significance and technical application. The dynam-
ics of a rigid body allows one to set up six nonlinear equations for
the most general motion: three momentum equations and three
moment of momentum equations. The scientific studies of the
hydrodynamic characteristics of a rigid body in a water column
involve nonlinear dynamics, body and multiphase fluid interac-
tion, free surface penetration, and stability theory.

The technical application of the hydrodynamics of a rigid body
with high speed into fluid includes aeronautics, navigation, and
civil engineering. Recently, the scientific problem about the move-
ment of a rigid body in water column drew attention to the naval
research. This is due to the threat of mine and maritime impro-
vised explosive device �IED�. Prediction of a fast falling rigid
body in the water column contributes to the bomb breaching for
mine and maritime IED clearance in surf and very shallow water
zones with depth shallower than 12.2 m �i.e., 40 ft�, according to
U.S. Navy’s standards.

To predict rigid body maneuvering in water column, accurate
calculation of hydrodynamic forces and torques is difficult due to
unknown drag, lift, and torque coefficients. Determination of
these coefficients is crucial for the prediction �1–3�. Different
from traditional methods used in aerodynamics, such as using the
wind tunnel, we present a new efficient and low cost method to
determine the drag, lift, and torque coefficients. This method con-
sists of theoretical and empirical parts. The theoretical part is to
establish dynamical relationships between hydrodynamic coeffi-

cients �e.g., drag, lift, and torque coefficients� and kinematics of
the rigid body �e.g., position and orientation�. The empirical part
is to conduct experiments through shooting the rigid body into the
water tank with high-speed video �HSV� cameras at 10,000
frames per second �fps� to record its underwater position and ori-
entation. Semi-empirical formulas can be established for the drag,
lift, and torque coefficients by substituting the digital data of rigid
body’s location and orientation from the HSV cameras into the
dynamical relationships.

The rest of the paper is outlined as follows. Sections 2 and 3
describe the hydrodynamic forces, torques, and basic dynamics.
Section 4 presents the diagnostic relationships for the drag/lift and
torque coefficients, which were derived from the momentum and
moment of momentum equations. Section 5 depicts the empirical
method. Sections 6 and 7 show the semi-empirical formulas for
the drag/lift and torque coefficients and the verification. Section 8
describes the tail section damage effects. Section 9 presents the
conclusions.

2 Hydrodynamic Forces and Torques

2.1 Drag/Lift Forces. The earth-fixed coordinate system is
used with the unit vectors �i , j� in the horizontal plane and the unit
vector k in the vertical direction. Consider an axially symmetric
rigid body such as a bomb falling through a water column. The
two end-points of the body �i.e., head and tail points� are repre-
sented by rh�t� and rt�t�. The difference between the two vectors
in the nondimensional form

e =
rh − rt

�rh − rt�
�1�

is the unit vector representing the body’s main axis direction �Fig.
1�. The centers of mass �om� and volume �ov� are located on the
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main axis with � the distance between ov and om, which has a
positive �negative� value when the direction from ov to om is the
same �opposite� as the unit vector e �Fig. 2�. The location �or
called translation� of the body is represented by the position of om

r�t� = xi + yj + zk �2�
The translation velocity is given by

dro

dt
= u, u = Ueu �3�

where U and eu are the speed and unit vector of the rigid-body
velocity. Let � be the angle of the body’s main axis with the
horizontal plane, � be the angle of the body’s velocity u with the
horizontal plane, and � be the attack angle between the direction
of the main body axis �e� and the direction of the body velocity
�eu� �4� �Fig. 2�

� = cos−1�eu • e�, � = sin−1�e • k�, � = sin−1�eu • k� �4�

Usually, the unit vector eu is represented by �Fig. 3�

eu = cos � cos �i + cos � sin �j + sin �k �5�

where � is the azimuth angle. Differentiation of Eq. �5� with re-
spect to t gives

deu

dt
=

d�

dt
eu

� +
d�

dt
cos �eu

� �6�

where

eu
� = − sin �i + cos �j, eu

� = − sin � cos �i − sin � sin �j

+ cos �k �7�
are unit vectors. It is clear that

eu
� � eu, eu

� � eu, eu
� � eu

� �8�

Let Vw be the water velocity. Water-to-body relative velocity V
�called the relative velocity� is represented by

V � Vw − u � − u = − Ueu �9�
Here, the water velocity is assumed much smaller than the rigid-
body velocity. A third basic unit vector �em

h � can be defined per-
pendicular to both e and eu

em
h =

eu � e

�eu � e�
�10�

The drag force �Fd� is in the opposite direction of the rigid-body
velocity. The lift force �Fl� is in the plane constructed by the two
vectors �e and eu� �i.e., perpendicular to em

h � and perpendicular to
eu, and therefore the lift force is in the same direction as em

h �eu.
Both drag and lift forces, exerting on the center of volume, are
represented by

Fd = − fdeu, Fl = f lel, el = em
h � eu �11�

where fd and f1 are the magnitudes of the forces. The magnitudes
�fd , f l� are represented by the drag law �5�

fd = 1
2Cd�AwU2, f l = 1

2Cl�AwU2 �12�

where � is water density; Aw is the under water projection area; Cd
and Cl are the drag and lift coefficients, which are determined by
the experiments.

Bomb is a fast-moving rigid body usually with four fins. Two
fins in the same plane are called the pair of fins. For simplicity,
these fins are treated approximately as the NACA0015 airfoils
�Fig. 4� with known drag and lift coefficients �6�. Using these
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Fig. 2 Attack angle „�…, angles „� ,�…, center of volume „ov…,
center of mass „om…, and drag and lift forces „exerted on ov….
Note that � is distance between ov and om with positive „nega-
tive… value when the direction from ov to om is the same „oppo-
site… as the unit vector e.
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coefficients, the combined drag and lift forces on a pair of fins
�Fc

f� can be calculated. If the bomb has n pairs of fins, the total
drag and lift forces on the fins are represented by nFc

f .

2.2 Hydrodynamic Torque. Since the drag/lift forces are ex-
erted on the center of volume �ov�, the hydrodynamic torque �rela-
tive to center of mass, om� Mh is computed by

Mh = − �e � �Fd + Fl� − n� fe � Fc
f + Mtr + Mrot �13�

where the first two terms in the righthand side of Eq. �13� repre-
sent the torque by the drag and lift forces; Mtr is the antitransla-
tion torque by the moment of drag/lift forces; and Mrot is the
antirotation torque. Mtr is perpendicular to both eu �the direction
of V� and e �the body orientation�, and therefore it is in the same
direction of the unit vector em

h

Mtr = Mtrem
h �14�

with Mtr being its magnitude calculated by the drag law �4�

Mtr = 1
2Cm�AwLwU2 �15�

Here, Cm is the antitranslation torque coefficient.

2.3 Antirotation Torque. The antirotation torque acts as the
rigid body rotates. Let �� be the rigid body’s angular velocity
vector, which is decomposed into two parts, with one along the
unit vector e �bank angle� and the other � �azimuthal and eleva-
tion angles� perpendicular to e �Fig. 5�

�� = �se + � �16�

Let e	 be the unit vector in the direction of �

� = �e	, � = ��� �17�

The unit vector e	 is perpendicular to e

e	 • e = 0 �18�

Time rate of change of the unit vector e �main axis direction� is
given by

de

dt
= �� � e = � � e . �19�

Vector product between Eq. �19� and the unit vector e gives

e �
de

dt
= � = �e	 �20�

Differentiation of Eq. �16� with respect to time t and use of Eq.
�20� lead to �7�

d��

dt
=

d�s

dt
e + �s�� � e� +

d�

dt
�21�

The antirotation torque �Mrot� is against the rotation of the rigid
body ��. It can be decomposed into two parts

Mrot = Ms + Mc �22�

where the torque Ms �resistant to self-spinning, �se� parallels the
main axis of the body �i.e., the unit vector e�

Ms = − Mse , �23�

and the torque Mc is perpendicular to the unit vector e

Mc = − Mce	, e	 � e , �24�

where Ms and Mc are the corresponding scalar parts. The drag law
shows that �8�

Ms = 1
2Cs�AwLw

3 ��s��s �25�

Mc = 1
2CF�
��AwLwVr

2, 
 � �Lw/V �26�

where the function F�
� is obtained from the surface integration
of torque due to cross-body hydrodynamic force �perpendicular to
the body� �9�

F�
� � �
1

6

for 
 � 1/2

	
1

4
− 
2� +

4

3

2 +

1

2
2
 1

16
− 
4�� for 
 � 1/2


�27�

Here, Vr is the projection of the water-to-body relative velocity on
the vector er=e	�e. Using Eq. �9� we have

Vr = V • er = − Ueu • �e	 � e� �28�

In Eqs. �25� and �26�, Cs is the torque coefficient for self-spinning;
C is the drag coefficient due to cross-body flow. For a cylindrical
body, the coefficient C is given by �10�

C =�
1.9276 + 8/Re if Re 
 12

1.261 + 16/Re if 12 � Re 
 180

0.855 + 89/Re if 180 � Re 
 2000

0.84 + 0.00003 Re if 2000 � Re 
 12,000

1.2 − 4/� if 12,000 � Re 
 150000, � � 10

0.835 − 0.35/� if 12,000 � Re 
 150000, 2 
 � � 10

0.7 − 0.08/� if 12,000 � Re 
 150,000, � � 2

1.875 − 0.0000045 Re if 150000 � Re 
 350,000

1/�641550/Re + 1.5� if Re � 350,000.



�29�

Here, � is the aspect ratio of the rigid body; Re=UD /�, is the
Reynolds number with D the effective diameter of rigid body.

3 Dynamics

3.1 Momentum Equation. Differentiation of Eq. �3� with re-
spect to time t gives the acceleration of the rigid body

Fig. 5 Illustration of �, Mtr, and Mc
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du

dt
=

dU

dt
eu + U

deu

dt
�30�

The momentum equation in the earth-fixed coordinate system is
given by �Fig. 3�

m
dU

dt
eu + U

deu

dt
� = F �31�

where F is the resultant force consisting of

F = Fg + Fb + Fd + Fl + nFc
f �32�

Here,

Fg = − mgk, Fb = ��gk �33�

are the gravity and buoyancy force and � is the volume of the
rigid body. For bomb without fin �n=0�, the resultant force is
represented by

F = Fg + Fb + Fd + Fl �34�

Inner products between Eq. �31� and the unit vectors �eu ,eu
�,

and eu
y for n=0 lead to

m
dU

dt
= ��� − m�gk • eu − fd �35�

mU
d�

dt
= ���� − m�gk + f lel� • eu

� �36�

mU cos �
d�

dt
= ���� − m�gk + f lel� • eu

� �37�

Here, we use Eq. �8� and the condition el�ev �i.e., the lift force
perpendicular to the drag force�. The vector ����−m�gk+ f lel� in
Eqs. �36� and �37� can be represented by

���� − m�k + f lel� = 
m
dU

dt
+ fd�eu + mU

d�

dt
eu

� + mU cos �
d�

dt
eu

�

�38�

with the magnitude of �mdU /dt+ fd� in the direction of eu,
mUd� /dt in the direction of eu

�, and mU cos �d� /dt in the direc-
tion of eu

�. Inner product of Eq. �38� by the unit vector el leads to

��− m + ���gk + f lel� • el = 	mU
d�

dt
eu

� + mU cos �
d�

dt
eu

�� • el

�39�

where the condition �eu�el� is used �see Eq. �11��.

3.2 Moment of Momentum Equation. The moment of mo-
mentum equation �relative to center of mass� is given by

J •
d��

dt
= Mb + Mh �40�

where

Mb = − �e � ���gk� �41�

is the torque by buoyancy force �called the buoyancy torque�. J is
gyration tensor. In the body-fixed coordinate system J is a diago-
nal matrix �8�

J = �J1 0 0

0 J2 0

0 0 J3
� �42�

with J1, J2, and J3 as the moments of inertia. For axially symmet-
ric rigid body such as bomb, J2=J3. Substitution of Eq. �13� into
Eq. �40� and use of Eqs. �11� and �22� lead to

J •
d��

dt
= Ms + M̂ �43�

where

M̂ � − ���ge � k − ��fde � eu + f le � el� − n� f fc
fe � ec

f + Mtr

+ Mc �44�

Since Ms is the antiself-spinning torque, which parallels the unit

vector e, and M̂ is the torque perpendicular to the unit vector e,
the moment of momentum Eq. �43� can be decomposed into two
components with one parallel to e �11�

J1
d�s

dt
= − Ms �45�

and the other perpendicular to e

Table 1 Hopkinson scaling laws

Physical
parameter Symbol Units

Required scaling for
dimensionless quantities
to have same value at

all scales

Naturally scaled value
with replica scaling in

Earth’s gravitational field

Length L L L /S L /S
Time t t t /S t /S
Mass m m m /S3 m /S3

Displacement x L x /S x /S
Velocity V L / t V V
Acceleration a L / t2 aS aS
Density � m /L3 � �
Stress � m /Lt2 � �
Strain � 1 � �
Modulus E m /Lt2 E E
Strength Y m /Lt2 Y Y
Strain Rate �� 1 / t ��S ��S
Gravity g L / t2 gS g
Viscosity � � /��=m /Lt � /S �
Fracture toughness K �L1/2=m /L1/2t2 K /S1/2 K /S
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d�

dt
=

M̂

J2
− �s�� � e� �46�

where Eq. �24� is used. For a rigid body with very slow or no
self-spinning �such as bomb�, �s�0, Eq. �46� becomes

J2
d�

dt
= M̂ �47�

4 Determination of the Hydrodynamic Coefficients
The momentum Eqs. �35� and �39� can be rewritten by

Cd =
2���� − m�gk • eu − mdU/dt�

�AwU2 �48�

Cl =
2�mU�eu

�d�/dt + eu
� cos �d�/dt� • el − ��� − m�gk • el�

�AwU2

�49�

Inner products of Eq. �47� by the unit vectors em
h �direction of Mtr�

for without fin �n=0� and e	 �direction of Mae� lead to

Cm =

J2
d�

dt
• em

h + ���g�e � k� • em
h

1

2
�AwLwU2

+ CF��Lw/Vr�
Vr

2

U2e	 • em
h

+
�

Lw
�Cd�e � eu� • em

h + Cl�e � el� • em
h � �50�

Equations �48�–�50� are used to determine the coefficients �Cd, Cl,
and Cm�. In the righthand sides of Eqs. �48�–�50�, the unit vectors
�e, ev, and e	� are essential, and the other unit vectors �el, em

h , eu
�,

and eu
�� are derived.

Accurate prediction of a high-speed rigid body’s location and
orientation in the water column needs realistic values of the drag/
lift and torque coefficients �Cd, Cl, and Cm�. Among these coeffi-
cients, Cd, Cl, and Cm depend on the attack angle ���. Effects of
special phenomena, such as surface impact, bubbles, and free sur-
face penetration on the movement of rigid body, are represented in
the change of these coefficients. Thus, if the time evolutions of
unit vectors �e, eu, and e	� and variables �x ,y ,z ,U ,�, and �� are
measured, time evolutions of the drag/lift and torque coefficients

�Cd, Cl, and Cm� can be obtained using the diagnostic relation-
ships �48�–�50�. The rotation rate � is calculated from the time
series of �� ,��.

With large-amount of derived �Cd, Cl, and Cm� data, instanta-
neous relationships �semi-empirical formulas� can be established
statistically between Cd, Cl, and Cm and basic parameters such as
the attack angle �, Reynolds number �Re�, and the rotation rate �.
A traditional method for this purpose is to conduct experiments in
the wind tunnel. Use of wind tunnel may be feasible for determin-
ing the drag/lift and torque coefficients of a rigid body in the air,
but not realistic in the water especially the rigid body with high
speed such as bomb.

5 Empirical Method

5.1 General Description. As alternative to the wind tunnel
method, an empirical method is used to measure time evolutions
of rigid body’s head and tail points rh�t� and rt�t� using HSV
cameras �12�. From the rh�t�, and rt�t� data, the time series of the
unit vectors �e, eu, and e	�, variables �x ,y ,z ,U ,�, ��, and attack
angle ��� can be calculated using Eqs. �3�–�5� and �23�. With the
diagnostic relationships �48�–�50�, time evolutions of the drag/lift
and torque coefficients �Cd, Cl, and Cm� can be obtained.

5.2 Hopkinson Scaling Laws. The Hopkinson scaling laws
are derived by normalizing the governing equations so that all
terms are dimensionless, as shown in Table 1. The first three col-
umns in the table below list the relevant physical parameters for
dynamic structural and material response, their standard symbols,
and their dimensional units. The first three �length, time, and
mass� are basic parameters. The dimensions of all the other quan-
tities can be expressed as powers of the basic parameters. The

Table 2 Drag coefficients between full-scale and 1/12-scale
models

Flow
type

Reynolds
number

Drag
coefficient

Full scale
bomb velocity

�m/s�

1/12 scale
bomb velocity

�m/s�

Laminar �103 400–0.6 �0.002 �0.027
Laminar 103–3�105 0.6–0.5 0.002–0.67 0.027–7.8
Turbulent �3�105 �0.2 �0.67 �7.8

Fig. 6 Drag coefficient versus Reynolds number for a circular
cross section „after Ref. †10‡…

Fig. 7 Photography of 1/12th scale model Mk-84 bomb: „a…
warhead with tail section and four fins and „b… sabot

Fig. 8 Overview experimental arrangement
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fourth column lists the required scaling for each of the parameters
in dimensionless form to have the same value at all scales. That is,
these entries define how each parameter should be scaled in order
for the governing equations to give the same solution at all scales.
For example, all of the length dimensions scale by the factor 1 /S.
Just like length, time scales as 1 /S, but mass scales as 1 /S3. The
required scaling for the other quantities is then simply a matter of
their actual dimensions in terms of L, t, and m. For example,
velocity has dimensions L / t. Both L and t scale as 1 /S, so the
ratio L / t is unchanged. Thus, velocities are the same at all scales.
However, acceleration has dimensions L / t2, and since both L and
t scale as 1 /S, L / t2 scales as S. Thus, accelerations at small scale
are larger than at full scale by the inverse of the scale factor. A
tremendous advantage of Hopkinson scaling is that density, stress,
and strain are independent of scale.

The last column in the table lists the naturally scaled values of
the parameters if the same materials are used and if the experi-
ment is performed in a 1−g gravitational field. These can be com-
pared with the previous column, which lists the scaling we desire
for each parameter. Thus, all the parameters for which the last two
columns are identical conveniently and naturally scale properly.
However, the last three parameters—g, �, and K—do not naturally
scale properly. For example, if gravitational effects are important,
gravity should be increased by the factor S. For the scale model
Mk84 experiments described in this report, gravity mainly plays a
role during the water surface waves that are generated during the
initial impact. For the most part, these effects are second order and
can be neglected. The effect of nonscaling viscosity or kinematic
viscosity is related to the Reynolds number and drag coefficient
value. The kinematic viscosity is typically a second-order effect at
high velocities and may be a first-order effect at lower velocities,
depending on the shape of the curve of drag coefficient versus
Reynolds number. Lastly, the nonscaling of fracture toughness
will not play a role, since there are no bombs casing failure
mechanisms. When conducting experiments at a reduced scale, it
is critical that all physical parameters of the problem are well
understood. In water the Mk84 bomb will generate and travel in a
cavitated column. The dynamics of motion are dominated by the
pressure drag on the body produced by turbulent low-drag condi-
tions, which will persist down to velocities of about 7.8 m/s for
the scale models. For velocities less than 7.8 m/s, the dynamics of
motion are dominated by laminar flow with frictional drag on the

skin of the bomb casing in the form of viscous forces. The curve
in Fig. 6 shows an empirical relationship between the drag coef-
ficient and Reynolds number �ratio of inertial-to-viscous forces�
for a given set of flow parameters around a circular cross section.
This curve implies that the dominant forces acting on the sub-
merged bomb may be determined as a function of the Reynolds
number and, thus, of its velocity, throughout the trajectory. For
exact similarity between the 1/12- and full-scale models, their
respective Reynolds numbers must be equal. However, to achieve
this exact similitude would require performing the scale-model
experiments in a medium for which the kinematic viscosity has
been reduced by the scale factor. The curve in Fig. 6 shows three
distinct domains: for Reynolds numbers up to 103, the drag coef-
ficient decreases monotonically to around 0.6, and for Reynolds
numbers between 103 and 3�105 the drag coefficient is nearly
constant at 0.5 to 0.6. Turbulent flow separation occurs for Rey-
nolds numbers greater than 4�103, and the drag coefficient tends
to be below 0.2.

Table 2 shows a comparison of the velocities at full scale and
1/12 scale for each of the three different domains. The first do-
main, in which the drag coefficient changes significantly with a
change in Reynolds number, represents the primary region in
which the scale models will not simulate the full-scale drag coef-
ficient. However, this domain on the curve represents velocities of
less than 0.002 m/s and is, therefore, insignificant for the practical
purpose of our study. Instead, the majority of the bomb motion
occurs in a turbulent flow region. The drag coefficient tends to be
very small in this region, and it is likely that the small-scale mod-
els provide a good simulation of the full-scale models for veloci-
ties down to 7.8 m/s for 1/12 scale. The scale models overpredict
the drag coefficient by a factor of about two or three for velocities
between 7.8 m/s and 0.027 m/s for 1/12 scale. For these velocities,
flow past the scale models is laminar with a constant drag coeffi-
cient of 0.5 to 0.6, whereas the full-scale model is experiencing
turbulent flow with a drag coefficient of less than 0.2. In summary,
Hopkinson scaling provides a good representation of the full-scale
motion over about 95% of the velocity range between 450 m/s and
0 m/s.

5.3 Model Design and Construction. Details of the full-
scale Mk84 with a guidance tail section were obtained from Boe-
ing Corporation with the mass inertia properties for the complete

Table 3 Summary of Mk-84 underwater trajectory experimen-
tal matrix

Launch
No.

Model
type

Water-entry
velocity

�m/s�

Water-entry
impact
angle
�deg�

1 I �tail with four fins� 132 89.2
2 I �tail with four fins� 297 90.0
3 I �tail with four fins� 295 88.8
4 I �tail with four fins� 302 88.5
5 I �tail with four fins� 227 88.0
6 I �tail with four fins� 219 89.0
7 I �tail with four fins� 119 88.2
8 II �tail with two fins� Impacted sabot Stripper plate
9 II �tail with two fins� Impacted sabot Stripper plate
10 II �tail with two fins� 295 90.0
11 II �tail with two fins� 290 90.0
12 II �tail with two fins� Impacted sabot Stripper plate
13 IV �no tail� 297 85.7
14 IV �no tail� 301 90.0
15 IV �no tail� 301 88.7
16 III �tail with no fin� 304 90.0
17 III �tail with no fin� 297 87.0
18 III �tail with no fin� 291 88.1
19 II �tail with 2 fins� 297 90.0 Fig. 9 Two HSV images for Launch-3 „Type-I… at water-entry

velocity of 295 ms−1: „a… initial water entry, „b… t=22.8 ms, and
„c… t=44.4 ms
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Mk84 warhead and tail section, as well as for the modifications to
the tail section, including removal of two fins, four fins, and the
complete tail section. We developed a closed form analytical
model to determine the outer casing material and thickness and
type of internal components and their location for the 1/12-scale
model to match the scaled total mass, center of gravity and radius
of gyration values for the Mk84 bomb with the different tail con-
figurations. Here, the overall outer shape of the scaled Mk84
bomb represented an exact dimensional replica of the full-scale
system. Figure 7 shows the overall design details of each model
configuration. The outer casing was made from 7075-T6 alumi-
num. For the models with a tail section, the casing was fabricated
in two pieces that were screwed together near the center point. To
obtain the correct mass properties, a copper plug was inserted
inside the model and then the remaining internal cavity was filled
with a low density Epoxy. For all of the models with a tail section,
only small differences in the copper plug size was required to
match the mass properties. For these models the Epoxy had a

density of 0.546 kg /m3. For the model with no-tail section, two
copper plugs were required and the Epoxy density had to be in-
creased to 1.168 kg /m3 by adding Tungsten powder. Four types
of model Mk-84 bombs were constructed: Type-I �tail with 4 fins�,
Type-II �tail with two fins�, Type-III �tail with no fins�, and
Type-IV �no tail�.

5.4 Experiment Procedure. Two experiments were con-
ducted to demonstrate the feasibility of this method with 1/12th
scale model of the general purpose bomb �Mk-84� as the fast-
moving rigid body. The first experiment was conducted at the
Monterey Bay Aquarium Research Institute �MBARI� unmanned
underwater vehicle test tank �9.14�13.72�9.14 m3� filled with
standard sea water �13,14�. The second experiment was conducted
at a 6 m deep by 9 m diameter pool, located at the SRI’s Corral
Hollow Experiment Site �15�. A pneumatic launcher �gas gun� was
used to shoot the 1/12th model Mk-84 bomb into the water tank in
the first �second� experiment with velocities up to 100 m/s �454
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m/s� �Fig. 8�. Since the implementation is very similar between
the two experiments and the second experiment has much larger
speed, the second experiment is presented here to illustrate this
method.

Models of Mk-84 bombs with and without tail section are taken
as examples to illustrate the methodology for determination of the
drag/lift and torque coefficients �Cd, Cl, and Cm�, and, in turn, the
prediction of location and orientation of a fast-moving rigid body
through the water column. The primary objective is to determine
the Mk-84 trajectory through the very shallow water zone to pro-
vide an estimate of the maximum bomb-to-target standoff and
required fuse delay time for optimum target lethality. Because it is

possible that a portion, or all, of the guidance tail section may
become separated from the warhead during water entry, it is nec-
essary to determine the Mk-84 trajectory for a variety of different
tail configurations, ranging from a warhead with a completely
intact tail section and four fins to a warhead with the tail section
completely.

Using the Hopkinson scaling laws, 1/12-scale Mk-84 bomb
models were designed and constructed in SRI that matched the
overall casing shape and mass inertial properties of the full-scale
Mk-84 prototype. To model the different possible damaged tail
configurations, we fabricated models that consisted of the war-
head section with a complete tail section and four fins, a complete
tail section and two fins, a complete tail section and no fins, and
with the tail section removed. For the complete Mk-84 bomb sys-
tem, including the warhead with tail section and four fins �Type-I�,
tail section and two fins �Type-II�, tail section and no fin �Type-
III�, and no-tail section �Type-IV�, were launched at different
nominal water-entry velocity regimes from 120.0 m/s to 308.8
m/s. Table 3 summarizes the overall experimental matrix and
water-entry conditions. Typically, the water-impact angle of entry
was between 88 deg and 90 deg. In Launches 10, 11, and 12 the
sabot failed to fully support the scale model within the gun during
the launch phase, resulting in the scale model impacting the sabot
stripper plate before impacting the water. Sequences of images
from the two orthogonal HSV cameras were generated for each
launch �Fig. 9�.

The gas gun �0.10 m diameter and 1.52 m long� barrel was
evacuated before launching the scale model to prevent an air blast
from disturbing the water surface prior to the model impacting the
water surface. At the end of the gas gun there was a steel ring to
strip the sabot from the scale model. At high velocities there is
some deviation from the theoretical calibration curve, which may
be attributed to gas blow by around the sabot or friction. For the
maximum gun operating pressure of 2,500 psi, we were able to
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achieve a nominal water-entry velocity of about 305 m/s.
Two orthogonal periscope housings were positioned in the wa-

ter tank to allow simultaneous above-water and below-water visu-
alization of the model trajectory. The housings supported
Phantom-7 HSV cameras, which were run at 10,000 fps. Five
high-intensity short duration �30 ms� flash bulbs were used to
front-light the scale model as it entered the water and traveled
under water. The HSV cameras and flash bulbs were triggered at
the time the sabot was released within the gun.

5.5 Data Retrieval. Upon completion of the launch phase,
the video from each camera was converted to digital format. The
digital video for each view was then analyzed frame by frame
�10,000 Hz� in order to determine the bomb’s position. The
bomb’s two-end �top and bottom� positions were input into a MAT-

LAB generated grid, similar to the ones within the water tank. The
first point to impact the water surface was always plotted first.
This facilitated tracking of the initial entry point throughout the
water column. Since only one ladder �Fig. 9� is used as the refer-
ence, 2D data in the �y , z� plane were retrieved. This means that
the x position of the projectile stays at zero.

After the data analysis, 16 time series of the unit vectors �e, eu,
and e	� variables �x ,y ,z ,U ,� ,�, and ��, and attack angle ���

were obtained for the four types of the model Mk-84 bombs. All
the experimental data have been converted to full-scale values
using the Hopkinson scaling laws �see Table 1�. For example, the
length and time are multiplied by S�=12�, and the mass is multi-
plied by S3�=1728�.

We divided the 16 time series into two groups: �a� Launches 13,
14, 15 �called the working data� for determining semi-empirical
formulas for the drag/lift and torque coefficients �Cd, Cl, and Cm�,
and �b� rest of the data for evaluating the semi-empirical formulas
�called evaluation data�.

5.6 Source of Errors. There were several sources of error
that hindered the determination of the bomb’s exact position
within the water column. Locations above or below the camera’s
focal point were subjected to parallax distortion. Placing the cam-
eras as far back as possible, while still being able to resolve the
individual grid squares, minimized this error. Second, the back-
ground grid �ladder in Fig. 9� was located behind the bomb’s
trajectory plane. This resulted in the bomb appearing larger than
normal. This error was minimized by not allowing the plotted
points to exceed the particular bomb’s length. Third, an object
injected into the water will generate an air cavity. This air cavity

Fig. 14 Two HSV images for Launch-11 „Type-II… at water-entry
velocity of 290 ms−1: „a… initial water entry, „b… t=21.6 ms, „c…
t=48.0 ms, „d… t=75.6 ms, „e… t=116.4 ms, and „f… t
=344.4 ms
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Fig. 15 Comparison between predicted and observed trajectories for Mk-84 warhead with tail section and two fins „Type-1I…
with initial water-entry speed: „a… 295 ms−1, „b… 290 ms−1, and „c… 297 ms−1

Fig. 16 Two HSV images for Launch-17 „Type-III… at water-
entry velocity of 298 ms−1: „a… initial water entry, „b… t
=22.8 ms, „c… t=55.2 ms, „d… t=99.0 ms, „e… t=211.2 ms, and
„f… t=376.2 ms. Note that for time longer than 99.0 ms, only one
HSV camera got the pictures.
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can greatly affect the initial motion, particularly at very high
speeds. The air cavity effect was deemed to be minimal when two
10,000 Hz HSV cameras were used.

6 Semi-Empirical Formulas
Statistical analysis was conducted on the working data set

�Type-IV: Launch-13, -14, and -15� at each time step �data rate is
10,000 Hz� between �Cd, Cl, and Cm� and �Re, �, and ��. The
following semi-empirical formulas have been established

Cd = 0.02 + 0.35e−2�� − �/2�2
 Re

Re��0.2

+ 0.008� sin � �51�

Cl = �0.35 sin��1�
 Re

Re��0.2

if � 

�

2

0.1 sin��2� − 0.015�
 Re

Re��2

sin��2
0.85� if � �

�

2



�52�

Cm = �0.07 sin�2��
Re�

Re
�0.2

if � 

�

2

0.02 sin�2���
 Re

Re�� if � �
�

2

 �53�

Here, Re�=1.8107, is the critical Reynolds number, and

� � ��2.2 − �� − �� − 2���2.2�1/2.2sign�� − 2�� �54�

�1 = �
2�

�
�1.8

, �2 = 2�
2�

�
− 1�0.7

�55�

The semi-empirical formulas �51�–�53� show that the drag/lift co-
efficients �Cd and Cl� depend more on Re and � and less on the
rotation rate �. For the same attack angle ���, Cd increases with
Re. For the same Re, Cd increases with � monotonically from 0
deg to 90 deg and reduces monotonically with � from 90 deg to
180 deg with a maximum value for �=90 deg �Fig. 10�. The
dependence of lift coefficient Cl on Re and � is a little compli-
cated than Cd, especially for the attack angle larger than 90 deg
�Fig. 11�. The torque coefficient Cm depends only on Re and �
�Fig. 12�.

7 Verification of the Semi-Empirical Formulas

7.1 Experimental Results

7.1.1 Type-I. This type is for the complete Mk-84 bomb sys-
tem, including the warhead with tail section and four fins. Seven
launches �Launch-1–Launch-7� were conducted at different nomi-
nal water-entry velocity regimes �119–302 m/s�. Figure 9 shows a
sequence of images from the two orthogonal HSV cameras for a
nominal velocity of 295 m/s �Launch-3�. The cavitated column
generated by the Mk-84 bomb motion consists of a tapered cone
that has a maximum full-scale diameter at the end of the tail
section of about 0.9 m. This is about a factor of two larger than the
maximum bomb diameter of 0.45 m. This cavity shape was about
the same for all of the initial water-entry velocities between 119
m/s and 302 m/s.

Figure 13 shows the comparison of bomb’s translation and ori-
entation for Type-I �Launch-1 to Launch-7� between the calcu-
lated and observed data. Both calculated and observed trajectories
show similar patterns. For the low velocity regime of about 125
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Fig. 17 Comparison between predicted and observed trajectories for Mk-84 warhead with tail section and no fin „Type-1II…
with initial water-entry speed: „a… 304 ms−1, „b… 298 ms−1, and „c… 291 ms−1

Fig. 18 Two HSV images for Launch-13 „Type-IV… at water-
entry velocity of 296 ms−1: „a… initial water entry, „b… t
=30.0 ms, „c… t=51.6 ms, „d… t=155.4 ms, and „e… t=418.2 ms
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m/s �Launach-1 and Launch-7�, at a full-scale depth of 12 m, the
horizontal position ranged between 0.1 m �Launch-7, Fig. 13�g��
and 0.67 m �Launch-1, Fig. 13�a��. The bomb trajectories are
quite stable without oscillation and tumbling no matter the water-
entry velocity is high or low.

7.1.2 Type-II. This type is for the modified Mk84 bomb sys-
tem including the warhead with a tail section and two fins. Three
launches �Launch-10, -11, and -19� were conducted at an average
water-entry velocity of about 294 m/s. Figure 14 shows a se-
quence of images �Launch-11� from the two orthogonal HSV cam-
eras with a water-entry velocity of 290 m/s. The cavitated column
generated by the bomb motion consists of a tapered cone that has
a maximum full-scale diameter at the end of the tail section of
about 0.9 m. This is about a factor of two larger than the maxi-
mum bomb diameter of 0.45 m. Thus, the initial cavity shape was
about the same as for the model with a tail section and four fins,
as described above.

Figure 15 shows the comparison of bomb’s translation and ori-
entation for Type-II �Launch-10, -11, and -19� between the calcu-
lated and observed data. Both calculated and observed trajectories
show similar patterns. At full-scale depth of 12.2 m �i.e., 40 ft�,
the horizontal position ranged between 0.53 m �Launch-11� and
2.1 m �Launch-10�. These values are about a factor of two larger
than the values measured for Mk-84 bomb configuration with a
tail section and four fins. Also, there seems to be no correlation
between trajectory path and initial impact angle. The removal of
two fins causes the bomb to eventually make a 180 deg turn and
travel toward the surface. The 12.2 m depth is reached at about 45
ms after water entry.

7.1.3 Type-III. This type is for the modified Mk-84 bomb
system, including the warhead with a tail section and no fin. Three
launches �Launch-16, -17, and -18� were conducted at an average
water-entry velocity of about 298 m/s. Figure 16 shows a se-
quence of images �Launch-17� from the two orthogonal HSV

Fig. 19 Comparison between predicted and observed trajectories for Mk-84 warhead with no-tail section „Type-1V… with
initial water-entry speed: „a… 296 ms−1, „b… 301 ms−1, and „c… 301 ms−1
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cameras with a water-entry velocity of 297 m/s. The cavitated
column generated by the bomb motion consists of a tapered cone
that has a maximum full-scale diameter at the end of the tail
section of about 0.9 m. This is about a factor of two larger than the
maximum bomb diameter of 0.45 m. Thus, the initial cavity shape
was about the same as for the model with a tail section and four
fins and for the model with two fins, as described above.

Figure 17 shows the comparison of bomb’s translation and ori-
entation for Type-III �Launch-16, -17, and -18� between the cal-
culated and observed data. Both calculated and observed trajecto-
ries show similar patterns. At full-scale depth of 12.2 m �i.e., 40
ft�, the horizontal position ranges between 2.1 m �Launch-18� and
3.5 m �Launch-17�. These values are about a factor of 9.5 and 3.5,
respectively, larger than the values measured for an Mk-84 war-
head with a tail section and four fins. Also, there seems to be no
correlation between trajectory path and angle of impact. As shown
in Figs. 15 and 16, the removal of four fins causes the bomb
eventually to make a 180 deg turn and travel toward the surface in
a manner similar to the trajectory for a bomb with a tail section
and two fins. The 12.2 m depth is reached at about 47 ms after
water entry. In general, the model with a tail section and no fins
shows a decrease in overall trajectory stability compared with a
model with a tail section and two fins. This is evident primarily
through larger horizontal positions.

7.1.4 Type-IV. This type is for the modified Mk-84 bomb sys-
tem, including the warhead and no-tail section. Three launches
�Launch-13, -14, and -15� were conducted at an average water-
entry velocity of about 299 m/s. Figure 18 shows a sequence of

images �Launch-13� from the two orthogonal HSV cameras with a
water-entry velocity of 297 m/s. The cavitated column generated
by the bomb motion consists of a tapered cone that has a maxi-
mum full-scale diameter at the end of the tail section of about 0.9
m. This is about a factor of two larger than the maximum bomb
diameter of 0.45 m. Thus, the initial cavity shape was about the
same as for the model with a tail section �four, two, and no fins�,
as described above.

7.2 Model-Data Intercomparison. The momentum equa-
tions �35�–�37� and the moment of momentum equations �45� and
�46� were integrated numerically integrated using Eqs. �51�–�53�
for Cd, Cl, and Cm and the same parameters �such as the density
ratio, length, radius, the center of volume, and the center of mass�
and the drop initial conditions �speed and orientation� as in Type-
III �tail without fin� and Type-IV �no tail� �see Table 3�. The
validity of the semi-empirical formulas �51�–�53� are verified
through a comparison between calculated and observed bomb tra-
jectories, orientations, and velocities.

Figure 19 shows the comparison of bomb’s translation and ori-
entation for Type-IV �Launch-13, -14, and -15� between the cal-
culated and observed data. Both calculated and observed trajecto-
ries show similar patterns. At full-scale depth of 12.2 m �i.e., 40
ft�, the bomb has rotated 180 deg such that the bomb is moving
tail first. When the nose reaches a depth of 12.2 m, the nose
horizontal position is between 5.5 m and 7.2 m. Launch-13 had a
deviation of 4.3 deg from the vertical water-entry angle, which
was the largest deviation in all of the launches. However, com-
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parison of the trajectories in Launch-13 and Launch-14, in which
a 90 deg water-entry angle was obtained, indicates that there is no
correlation between impact angle and trajectory path. Thus, the
trajectory motion is dominated by instability of the bomb within
the cavitated region. Different from the Mk-84 bomb with a tail
section and no fin �or two fins�, the Type-IV bombs never move
up toward the surface �Fig. 19�. Although the model is fully 3D, in
order to compare it with the 2D data set �see Sec. 5.5�, only the
2D components in the �y , z� plan were computed. That is why the
x position of the projectile stays zero in Fig. 19.

Figures 20–22 show the comparison between predicted and ob-
served time evolutions of the horizontal shift �y� and depth posi-
tion �z� of the center of mass �om�, bomb speed �U�, and angles
�� ,� ,��. At the water entry, the horizontal shift �y� is set to zero.
The predicted values of these variables are consistent to the cor-
responding observed values. This confirms the validity of the
semi-empirical formulas �53�–�55� for drag/lift and torque coeffi-
cients �Cd, Cl, and Cm�. The three launches show the same inter-
esting results. The bomb nose reaches the 12.2 m depth at about
110 ms after water entry. At this depth the bomb nose velocity
decreased by about 82%. The horizontal deviation �y� of om in-
creases rapidly at first and then slowly with time, and about 6 m
from the entry point as the bomb reached the depth of 12.2 m.

8 Tail Section Damage Effects
The experiments conducted with different tail configurations

were performed to determine the effects on bomb trajectory for
different possible postulated damage levels to the tail section. Be-

cause the tail section is comprised mostly of internal stiffeners
with an external skin, it may be weaker than the warhead section
and, therefore, may be damaged during initial water entry or dur-
ing tail slap within the cavitated region. Figure 23 shows the
maximum measured trajectories for each tail configuration for a
nominal water-entry velocity of about 297 ms−1, i.e., Launch-2
�Type-I�, Launch-19 �Type-II�, Launch-17 �Type-III�, and
Launch-13 �Type-IV�.

Table 4 summarizes data comparison of the overall trajectory
behavior for the different tail configurations. For each trajectory
parameter we show the value associated with a particular tail con-
figuration and the percentage difference compared with a com-
plete bomb having a tail section and four fins. The horizontal
position shift y �noting that y=0 at the water entry� significantly
increases with increased levels of damage to the tail section. For a
model with a tail section and two fins, no fins, and no-tail section,
the horizontal position values increase by 120%, 259%, and 575%
�i.e., from 0.9 m to 2.12 m, 3.46 m, and 6.50 m�, respectively.
With regard to travel time at 12.2 m depth, only the no-tail con-
figuration shows a significant increase of 179% �from 46.2 ms to
129. 5 ms�.

9 Conclusions
A new dynamic-photographic method has been developed to

determine the drag/lift and torque coefficients �Cd, Cl, and Cm� of
a fast-moving rigid body in the water column. This method con-
tains two parts: �1� establishment of the diagnostic relationship
between Cd, Cl, and Cm and the rigid body’s trajectory and orien-
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tation, and �2� data collection of trajectory and orientation of a
fast-moving rigid body using multiple high-speed video cameras
�10,000 Hz�. Using the digital photographic data, semi-empirical
formulas of Cd, Cl, and Cm versus Reynolds number, attack angle,
and rotation rate can be established. The cost of this method is
much lower than the traditional method using the wind tunnel to
determine Cd, Cl, and Cm.

To demonstrate the feasibility and powerfulness of this method,
an experiment was conducted with 1/12th scale model of the gen-
eral purpose bomb �Mk-84� as the fast-moving rigid body at a 6 m
deep by 9 m diameter pool, located at the SRI’s Corral Hollow
Experiment Site. A gas gun was used to shoot the 1/12th model
Mk-84 bomb into the water tank with velocities up to 304 ms−1.
Four types of Mk-84 model bombs were used for a total of 16
launches for the experiment: warhead with tail section and four
fins �Type-1�, with tail section and two fins �Type-1I�, with tail
section and no fin �Type-1II�, and with no-tail section �Type-IV�.
Among them, data from three launches in Type-IV were used to
get the semi-empirical formulas for Cd, Cl, and Cm. The rest of
data were used for verification.

The momentum equations and moment of momentum equations
were integrated with the same parameters �such as the density
ratio, length, radius, the center of volume, and the center of mass�
and the drop initial conditions �speed and orientation� as in the
observations after using the semi-empirical formulas for Cd, Cl,
and Cm. Consistency between calculated and observed bomb tra-
jectories, orientations, and velocities show the powerfulness of
this method.

Both calculated �solving dynamic equations with the semi-
empirical formulas� and experimental data show similar results.
The cavitated column generated by the Mk-84 bomb motion con-
sists of a tapered cone that has a maximum full-scale diameter at
the end of the tail section of about 0.9 m. This is about a factor of
2 larger than the maximum bomb diameter of 0.45 m. This cavity
shape was about the same for all of the initial water-entry veloci-
ties and four types of model bombs.

The horizontal nose position significantly increases with in-
creased levels of damage to the tail section. For a model with a
tail section and two fins, no fins, and no-tail section, the horizontal
position values increase by 120%, 259%, and 575%, respectively.
With regard to travel time at 12.2 m �i.e., 40 ft� depth, only the
no-tail configuration shows a significant increase of 179%.

For bomb with a tail section and four fins, its trajectories are
quite stable without oscillation and tumbling whether the water-
entry velocity is high or low. Removal of two fins causes the
bomb to eventually make a 180 deg turn and to travel toward the
surface. Although having a similar trajectory pattern �i.e., making
a 180 deg turn and traveling toward the surface�, the removal of
four fins shows a decrease in overall trajectory stability compared
with a model with a tail section and two fins. This is evident
primarily through larger horizontal positions. For Mk-84 bomb
without a tail section, the bomb has rotated for 180 deg at full-
scale depth of 12.2 m, such that the bomb moves tail first. Differ-
ent from the Mk-84 bomb with a tail section and no fin �or two
fins�, the Mk-84 bombs without a tail section never move up
toward the surface.
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Table 4 Horizontal position shift and travel time at depth of
12.2 m „i.e., 40 ft… for Mk-84 warhead with different tail
configurations

Model type
Horizontal position shift y

�m�
Travel time

�ms�

Tail with four fins 0.96 46.2
Tail with two fins 2.12 46.2
Tail with nonfins 3.46 49.8
No tail 6.50 129.5
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Internal Resonance of a Floating
Roof Subjected to Nonlinear
Sloshing
Internal resonance in the vibration of a floating roof coupled with nonlinear sloshing in
a circular cylindrical oil storage tank is investigated. The nonlinear system exhibits
internal resonance when nonlinear terms of the governing equation have a dominant
frequency close to a certain modal frequency of the system. Numerical results show that
when internal resonance occurs, the responses of stresses in a floating roof exhibit a
long-duration period of large amplitude despite a short duration of the earthquake exci-
tation applied to the tank. Due to the presence of internal resonance, the underestimation
of the stresses associated with the use of the linear theory becomes more marked, and
thus the importance of nonlinearity of sloshing in the stress estimation is accentuated. It
is illustrated that the magnitudes of the stresses increase with the increase in the liquid-
filling level, and that the effect of internal resonance on the stresses noted in the case of
sinusoidal excitation appears under real earthquake excitation. A method for reducing
the stresses is proposed. �DOI: 10.1115/1.3173768�

1 Introduction
The vibration analysis of a floating roof subjected to liquid

sloshing in a circular cylindrical tank has received substantial at-
tention in estimating the safety of oil storage tanks. The oscilla-
tory motion of a floating roof is near resonance with low-
frequency components of earthquake ground motions. In the case
of resonance, finite amplitude oscillations occur and thus the non-
linearity of sloshing should be considered in the vibration analy-
sis. However, the vibration of a floating roof has been analyzed
using the linearized theory under the assumption of small ampli-
tude sloshing �1–4�, though extensive studies have been carried
out on the nonlinear sloshing problem with a free liquid surface
�5–13�. Thus, the effect of the nonlinearity of sloshing on the
magnitudes of stresses occurring in a floating roof has not been
investigated. In a previous paper �14�, the vibration of a floating
roof due to nonlinear sloshing was analyzed and it was shown that
the consideration of nonlinearity is obligatory to avoid underesti-
mation of the stresses. Furthermore, an experimental validation
was presented, which illustrated that the nonlinear solution of the
liquid surface displacement is in good agreement with the experi-
mental result �15�, and that the linear analysis results in underes-
timation of the sloshing wave height. However, the previous work
did not address internal resonance, which is an important phenom-
enon of this nonlinear system and accentuates the importance of
the consideration of the nonlinearity of sloshing in the stress esti-
mation. In the present paper, the effect of internal resonance on
the stresses is investigated and it is shown that the internal reso-
nance effect noted in the case of sinusoidal excitation may appear
when a broad-band real earthquake excitation is applied. A
30,000 m3 floating roof tank �FRT�, which was damaged by the
2003 Tokachi-oki earthquake �16� is employed as a typical ex-
ample. A method for reducing the stresses in the floating roof
pontoon is proposed.

2 Analysis

2.1 Computational Model. We consider a circular cylindrical
tank with a floating roof, as shown in Fig. 1, where O−r�z is the

moving coordinate system fixed to the tank, a is the radius of the
tank, and h is the liquid-filling level. The floating roof consisting
of deck, pontoon, and stiffeners is modeled as an axisymmetric
elastic shell. The detailed parameters for the floating roof geom-
etry are given in the section that is dedicated to the description of
the numerical example. The analysis is performed under the as-
sumption that the liquid motion is inviscid, incompressible, and
irrotational, and that the wall and bottom of the tank are rigid. The
nonlinearity of the boundary conditions at the interface between
the liquid and the floating roof is considered. The static position of
the interface is considered a plane expressed by z=h and 0�r
�a in formulating the nonlinear boundary conditions, because the
variation in the z coordinate of the static position is very small
compared with the liquid-filling level and the difference between
the radii of the tank wall and the floating roof is much smaller
than the tank radius.

2.2 Variational Form of Governing Equations. In this pa-
per, governing equations are expressed in a weighted-residual
form based on a variational principle. This expression is helpful
for applying the computationally-efficient Galerkin method to this
nonlinear problem. The Lagrangian density of the liquid is equal
to the pressure �17�. Therefore, the time integral of the Lagrangian
of the liquid can be expressed as follows:

�
t1

t2

Lfdt =�
t1

t2�� �
V

pldVdt �1�

where Lf is the Lagrangian of the liquid, V is the liquid domain,
and p1 is the liquid pressure given by

pl = − � f� ��

�t
+ g�z − h� + r cos � f̈ x�t� + r sin � f̈ y�t� +

1

2
����2

+ Ġ�t�� �2�

where � f is the liquid density; � is the velocity potential, which
describes the liquid motion relative to the moving tank; g is the

gravitational acceleration; f̈ x�t� and f̈ y�t� are the earthquake accel-
eration inputs in the x and y directions, respectively; and G�t� is
an arbitrary time-dependent function. By adding the time integral
of the Lagrangian of the floating roof determined by the finite
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element method and applying the mathematical procedures ex-
plained in Appendix A to the calculus of variations for the total
Lagrangian, the required variational form of the governing equa-
tions can be obtained as follows:

� f�� �
V

�2���dV − � f�
0

2��
0

h � ��

�r
�

r=a

��	r=aadzd�

+ � f�
0

2��
0

a � ��

�z
�

z=0

��	z=0rdrd� − � f�
0

2��
0

a 
 � ū

�t

+ � ��

�z
�

z=h−ū

+ � ��

�r
�

z=h−ū

� ū

�r

+ � 1

r2

��

��
�

z=h−ū

� ū

��
���	z=h−ūrdrd� + �

m=0

�

�− �Xmx�t �Mm� Ẍmx�

+ Km� Xmx� � − �Xmy�t �Mm� Ẍmy� + Km� Xmy� ��

+ � f�
0

2��
0

a 
� ��

�t
�

z=h−ū

− gū + r cos � f̈ x�t� + r sin � f̈ y�t�

+
1

2
�
 ��

�r
�2

+ 
1

r

��

��
�2

+ 
 ��

�z
�2�

z=h−ū
��ūrdrd�

+ �
elem
�

0

2��
0

le

�rhr��− f̈ x�t�cos � − f̈ y�t�sin ���w̄

+ � f̈ x�t�sin � − f̈ y�t�cos ���v̄�rdsd�

− � f�G�
0

2��
0

a
� ū

�t
rdrd� = 0 �3�

where ū, v̄, and w̄ are the displacement components of the floating
roof in the −z, �, and r directions, respectively; m is the circum-
ferential wave number of the displacement; Xmx� and Xmy� are dis-
placement components resulting from the x and y components of
the excitation, respectively; Mm� and Km� are the mass and stiffness
matrices that are common to both Xmx� and Xmy� ; le is the length of
the generatrix of each shell element; s is the local coordinate
defined along the generatrix of each shell element; and �r and hr
are the density and thickness of the element. Because the varia-
tions in the velocity potential, the floating roof displacement, and
the arbitrary time-dependent function are arbitrary and indepen-
dent of one another, we obtain the system of governing equations.
The first term of Eq. �3� yields the Laplace equation correspond-
ing to the condition of continuity in the liquid domain as follows:

�2� = 0 �4�

The second and third terms of Eq. �3� give the boundary condi-
tions on the liquid-tank interface as follows:

� ��

�r
�

r=a

= 0, � ��

�z
�

z=0

= 0 �5�

In a similar manner, the fourth term of Eq. �3� represents the
condition that on the moving interface S, the normal velocity com-
ponents of the fluid particle and the floating roof are equal to each
other; the fifth to seventh terms of Eq. �3� lead to the equation of
motion for the floating roof subjected to the liquid pressure and
the inertial force due to the excitation; and the last term of Eq. �3�
yields the volume constant condition.

2.3 Nonlinear Differential Equations. From Eqs. �4� and
�5�, we express the velocity potential as follows:

��r,�,z,t� = �
m=0

�

�
n=1

�

�Ȧmnx�t�cos m�

+ Ȧmny�t�sin m��Jm��mnr�
cosh��mnz�
cosh��mnh�

�6�

where Amnx and Amny are the generalized coordinates, Jm is the
mth order Bessel function of the first kind, and �mn is the nth
positive root of Jm� ��a�=0.

The kth components of Xmx� and Xmy� can be expressed as

Xmxk� �t� = �
p=1

�

Tmkp� Empx�t�, Xmyk� �t� = �
p=1

�

Tmkp� Empy�t� �7�

where Tmkp� is the kth component of the pth eigenvector obtained
by solving the eigenvalue problem 	−	2Mm� +Km� 	=0, while
Empx�t� and Empy�t� are the modal coordinates. In terms of these
modal coordinates, the floating roof displacement at an arbitrary
position can be expressed, e.g., as

ū�r,�,t� = �
m=0

�

�
p=1

�

�Empx�t�cos m� + Empy�t�sin m��Smp�r� �8�

where Smp�r� is the modal function.
By substituting Eqs. �6�–�8� into the variational principle �3�

and cancelling the coefficients of the variations �Amqx, �Amqy,
�Emqx, and �Emqy, we can lead to nonlinear ordinary differential
equations for the generalized coordinates. These equations can be
expressed in the following matrix form:

M1ẍ1 + K1x1 = Ff̈�t� + G1 �9�

Mmẍm + Kmxm = Gm �m = 0,2� �10�

where xm is defined as xm
t = �xm1

t ,xm2
t , . . . ,xmnmax

t � with xmn
t

= �Amnx ,Amny ,Emnx ,Emny� for each value of m; f̈�t� is the tank

excitation vector given by � f̈ x�t� , f̈ y�t��t; and Gm �m=0–2� repre-
sents the nonlinear terms. The coefficients Mm, Km, and F of the
linear terms and some examples of the lengthy nonlinear terms are
presented in the previous paper �14�. The nonlinear term G1 in Eq.
�9� contains cubic functions for the components of x1 and prod-
ucts of the components of x1 and xm �m=0,2�. The nonlinear
terms G0 and G2 in Eq. �10� are expressed in terms of quadratic
functions for the components of x1. By solving Eqs. �9� and �10�,
the response of the system can be determined.

For each circumferential wave number m, the nth eigenfre-
quency 
mn of the linearized system can be determined by solving
the eigenvalue problem 	−
2Mm+Km	=0, as can be seen from
Eqs. �9� and �10�. The corresponding mode is called 
mn-mode in
the subsequent discussion. In 
mn-mode, xmn is predominant to
the other components xmn� �n��n� and 
mn is close to the slosh-
ing frequency �g�mn tanh��mnh��1/2. These trends can be con-
firmed numerically.

When the excitation frequency is close to 
11, the components
of x11 are predominantly of the form sin 
11t. As can be seen from

Fig. 1 Computational model
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Eq. �10�, 
0n- and 
2n-modes are excited by the nonlinear terms
G0 and G2, respectively. These nonlinear terms are expressed in
terms of quadratic functions for the components of x1 and are
consequently of the form sin2 
11t= 1

2 �1−cos 2
11t�, whose domi-
nant frequency is 2
11. Hence, a resonance occurs when 
0n or

2n is equal to 2
11 for a certain value of n. This type of reso-
nance is referred to as internal resonance and is distinguished
from normal linear resonance of a directly excited mode.

When 
0n=2
11, 
0n- and 
11-modes interact with each other,
while in the case of 
2n=2
11, the interaction between 
2n- and

11-modes occurs. These interactions may be considered as those
between the modal components represented by the generalized
coordinates xmn �m=0,2� and x1n of the admissible functions
�Eqs. �6�–�8��, because in 
mn-mode, xmn is predominant to the
other components xmn� �n��n� as mentioned above.

3 Numerical Examples
Numerical calculation was conducted for a 30,000 m3 tank.

Parameters of this tank are presented in Table 1. The detailed
geometry of the floating roof used for the numerical example is
shown in Fig. 2. The damping effect is considered by adding the
damping term �� 	z=h to the quantity in the brace of Eq. �3� and
determining the constant � as �=2�mn
mn ��mn=0.01,
mn

2

=g�mn tanh��mnh�� for each modal component of � given by Eq.
�6�. Confirmation of this type of damping is presented in Appen-
dix B. For the radial displacement of the outer rim of the pontoon
relative to the tank wall, spring-support and damping constants

per unit area 86,000 N /m3 and 5000 Ns /m3 were taken into ac-

count. The excitations were given as f̈ x�t�=0.16 sin�
t� �0� t

�6� /
�, f̈ x�t�=0 �6� /

 t�, and f̈ y�t�=0 �0� t�, where 

=1.05
11. The period of the fundamental sloshing mode is
2� /
11=7.02 s. The sinusoidal excitation of the duration of three
periods is often employed to model earthquake excitations �15�,
because the sinusoidal excitation is useful in conducting a simu-
lation study for the resonant and critical case while incorporating
the finiteness of the duration of earthquake strong motion. In the
numerical analysis of Eqs. �9� and �10�, the modes of up to n=7
are retained.

Figure 3 shows the response of the vertical displacement at the
outer rim of the pontoon. For the sake of comparison, the solution
obtained by the linear analysis is shown using a thin line. It can be
seen from Fig. 3 that the positive maximal values of the nonlinear
response are larger than those of the linear solution.

The responses of stresses are illustrated in Fig. 4, showing the
radial bending stress �s at the outer end of the bottom of pontoon

Table 1 Parameters of numerical example „30,000 m3 oil stor-
age tank…

Radius of tank, a 21.35 m
Liquid-filling level, h 21.75 m
Liquid density, � f 845 kg /m3

Radius of floating roof, b 21.2 m
Radius of deck, b1 18.9 m
Compartment in pontoon is not present
Distance between deck and upper end
of inner rim, H1 0.335 m
Distance between deck and lower end
of inner rim, H2 0.075 m
Height of outer rim, H 0.71 m
Slope tan−1�dz /dr� of deck 0.002 deg
Slope tan−1�dz /dr� of top of pontoon 3 deg
Slope tan−1�dz /dr� of bottom of pontoon �4.4 deg
Thickness �deck� 0.0045 m
Thickness �top and bottom of pontoon� 0.0045 m
Thickness �outer rim of pontoon� 0.006 m
Thickness �inner rim of pontoon� 0.015 m
Radial coordinates of stiffeners 2.75+3i �i=0–4�
Height and breadth of stiffeners 0.1 m, 0.2 m
Thickness of stiffeners 0.0045 m
Density of floating roof 7850 kg /m3

Young’s modulus of floating roof 2.1�1011 �N /m2�
Poisson’s ratio of floating roof 0.3

Fig. 2 Geometry of floating roof used for numerical example

Fig. 3 Response of vertical displacement of floating roof at
outer rim of pontoon „thin line, linear; thick line, nonlinear…

Fig. 4 Responses of stresses „thin lines, linear; thick lines,
nonlinear…. „a… Radial bending stress �s at outer end „r ,�…
= „b ,0… of bottom of pontoon. „b… Hoop membrane stress �� at
the same position.
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�Fig. 4�a�� and the hoop membrane stress �� at the same position
�Fig. 4�b��. The bending stress is calculated by subtracting the
stress value at �=−0.5hr from that at �=0.5hr and dividing the
difference by 2, where hr is the thickness at the position of interest
and � is the coordinate measured along the normal of the midplane
of the shell. The positive direction of � is +z on the bottom of the
pontoon. The membrane stress is the mean of the stress values at
�=−0.5hr and �=0.5hr. The stresses shown in Fig. 4 were found
to reach high levels by searching the maximum absolute values of
the membrane and bending stresses for each stress component at
all places over the floating roof.

It can be seen from Fig. 4 that the stress responses in the non-
linear sloshing reach much higher levels than those in the linear
liquid motion. To examine the physical reason for these results,
the eigenfrequencies 
mn are presented in Table 2. We see that the
system possesses internal resonances 
02=2
11 and 
22=2
11
noted in Sec. 2.3. Therefore, 
02-mode and 
22-mode vibrations
are caused by internal resonances. Because both 
02 and 
22 are
equal to 2
11, it is not clear which of these modes results in the
large nonlinear responses of the stresses. In order to answer this
question, an example of the circumferential variations in the non-
linear responses is shown in Fig. 5. It can be seen from Fig. 5 that
the mode with circumferential wave number 2 is predominant.
This means that the cause of the large stresses is 
22-mode.

Mode shapes of 
02- and 
22-modes near the pontoon are
shown in Figs. 6�a� and 6�b�, respectively. We see that 
02-mode
exhibits almost a rigid-body displacement of the pontoon, while

22-mode shows a large elastic deformation of the pontoon. Thus,
to examine the physical reason for the large stresses, it is neces-
sary not only to confirm the existence of internal resonances but
also to predict the contributions of the modes associated with
internal resonances to the stresses. The large deformation of

22-mode is due to the fact that rigidity of the inner and outer rims
of the pontoon �cylindrical shells� is low for the mode with cir-
cumferential wave number 2. Because of this low rigidity, the
torsional rigidity of the pontoon-ring is low for circumferential
wave number 2. The nonlinear analysis tool developed in this
study is based on the mode decomposition, thereby providing the
physical insight into the effects of internal resonances on the
stresses. Furthermore, the tool is computationally-efficient and re-
quires a small amount of computation time and cost to predict the
magnitudes of the stresses.

As shown in Fig. 4, the nonlinear responses of the stresses
exhibit a long-duration period of large amplitude after the excita-
tion ends at t=21 s. The reason for this can be explained as fol-
lows. The 
22-mode is excited by the nonlinear term expressed in
terms of the mode with circumferential wave number 1. This non-
linear term decays very gradually and behaves almost as an sta-
tionary excitation against 
22-mode because the damping of
sloshing is light. Consequently, 
22-mode vibration grows and the
stresses become large after the excitation ends at t=21 s. Thus,
the stresses not only reach high levels but also show long duration
even for the short duration of the earthquake excitation, when
internal resonance occurs.

Due to the presence of internal resonance, the floating roof
displacement response in the nonlinear sloshing decays signifi-
cantly slower than that in the linear liquid motion, as can be seen
from Fig. 3. By comparing Figs. 3 and 4, we see that the internal
resonance effect is more marked for the stresses than for the ver-
tical displacement of the floating roof. We attribute this to the
following reasons: �1� For the vertical displacement, the rigid-
body pitching oscillation mode contributes a predominant portion
to the response and thus the effect of 
22-mode vibration caused
by internal resonance is relatively small; and �2� for the stresses,
on the other hand, the rigid-body mode does not have any contri-
bution and therefore the effect of 
22-mode is significantly accen-
tuated. Consequently, consideration of the internal resonance ef-
fect in the estimation of the response magnitude is more important
for the stresses than for the vertical displacement of the floating
roof.

Table 3 shows dependence of the eigenfrequencies and the
stresses on the liquid-filling level h. The symbols �s max and
�� max denote the values of �s and �� when their absolute values
reach maximum in the time response analysis. When the liquid-
filling level h decreases from the original value h=21.75 m
�Table 1�, the ratio 
22 /
11 increases from 2. Therefore, the in-
ternal resonance effect disappears and the absolute values of
�s max and �� max reduce. The reason for 
22�2
11 for low
liquid-filling levels can be explained as follows. The eigenfre-
quencies 
mn are approximated by �g�mn tanh��mnh��1/2, where
�22=6.706 /a is larger than �11=1.8412 /a. As h increases,
tanh��22h� converges to unity more rapidly than tanh��11h�.
Therefore, 
22 remains almost constant over the wide range of the
liquid-filling level h, while 
11 reduces with decreasing h, as can
be seen from Table 3. Thus, 
22 becomes larger than 2
11 for low
liquid-filling levels.

One significant observation made from Table 3 is that the in-
crease in the liquid-filling level h from the original value h

Table 2 Eigenfrequencies �mn /2� „Hz… of floating roof
coupled with sloshing

m=0 m=1 m=2

n=1 0.2106 0.1425 0.1930
n=2 0.2874 0.2486 0.2863
n=3 0.3544 0.3190 0.3565
n=4 0.4260 0.3871 0.4322

Fig. 5 Circumferential variation of hoop membrane stress ��

shown in Fig. 4„b… „nonlinear, t=60 s…

Fig. 6 Mode shapes of floating roof „thin lines, undisturbed
position…: „a… �02-mode and „b… �22-mode

011016-4 / Vol. 77, JANUARY 2010 Transactions of the ASME

Downloaded 04 May 2010 to 171.66.16.45. Redistribution subject to ASME license or copyright; see http://www.asme.org/terms/Terms_Use.cfm



=21.75 m results in a further increase in the absolute values of
the stresses although 
22 /
11 becomes slightly smaller than 2.
This is because the frequency of the first sloshing mode with
circumferential wave number 1 is slightly lower than 
11 due to
the nonlinearity of sloshing, as can be seen from Fig. 3. One is
therefore led to the conclusion that the substantial internal reso-
nance condition instead of the nominal internal resonance condi-
tion should be considered to explain the result for the case in
which 
22 /
11 is slightly smaller than 2.

The presence of internal resonance is confirmed not only by the
magnitudes of the responses but also by the times at which the
responses reach maximum. Table 4 shows these times tmax. It can
be seen that tmax increases as the internal resonance effect be-
comes strong due to the increase in the liquid-filling level h. Ex-
amples of the responses at internal detuning shifted from the exact
internal resonance condition are shown in Fig. 7. The times taken
for the stresses to reach their maximum values are short in con-
trast to the case of Fig. 4.

The influences of internal resonance and simultaneous internal
resonance conditions on the dynamic behavior of systems with
liquid containers are well documented in Ref. �9�. The influences
were treated under both deterministic and random excitations. We
have treated the sinusoidal case over limited period of time in an
effort to simulate the effect of earthquakes, and found that the
internal resonance effect on the stress in a floating roof is much
larger than that on the sloshing wave height. However, the earth-
quake signals are known to be random and nonstationary. To take
into account the broad-band spectrum characteristic and nonsta-
tionarity of the excitation, the responses to a real earthquake ex-
citation are calculated. The acceleration record of this earthquake
is shown in Fig. 8�a�, while the Fourier transform of the accelera-
tion record divided by the squared angular frequency is presented
in Fig. 8�b�. We see that the earthquake excitation is considerably
broad-band, and that the dominant frequency 0.13 Hz of this
earthquake excitation is close to the eigenfrequency 
11 /2�
=0.1425 Hz of the system. The responses to this earthquake ex-
citation are presented in Fig. 9. The results show that the nonlinear
response of the vertical displacement of the roof decays signifi-
cantly slower than the linear solution �Fig. 9�a��, and that the
nonlinear responses of the stresses show a long-duration period of
large amplitude after the excitation decays �Figs. 9�b� and 9�c��.

These results illustrate that the internal resonance effects noted in
the case of sinusoidal excitation appear when a broad-band real
earthquake excitation is applied.

One feature of this example is that the slope angles of the top
and bottom of the pontoon are large. Figure 10 shows results for
the case in which these slope angles are reduced to 0.8 deg. By
comparing the results shown in Figs. 4 and 10, it can be seen that
the reduction in the slope angles is helpful for reducing the
stresses.

4 Conclusions
Internal resonance in the vibration of a floating roof subjected

to nonlinear sloshing in a circular cylindrical tank has been inves-
tigated. It was shown that vibration of a mode in which high
stresses occur can be induced by internal resonance. In this case,
the underestimation of the stresses associated with the use of the
linearized theory becomes more significant than in the case of
internal detuning, because the nonlinear responses of the stresses
exhibit a long-duration period of large amplitude after the excita-
tion ends. Consequently, consideration of the nonlinearity of
sloshing is of particular importance in order to obtain reasonable
safety estimations for floating roofs. Numerical results for a
30,000 m3 oil storage tank illustrate that �1� the magnitudes of the
stresses increase with the increase in the liquid-filling level, �2�

Table 3 Dependence of eigenfrequencies and stresses on liquid-filling level

h

h1
�h1=21.75 m�


11

2�
�Hz�


22

2�
�Hz�


22


11

�s.max
�MPa�

��.max
�MPa�

1.25 0.1446 0.2863 1.9799 �216.3 �128.4
1.10 0.1436 0.2863 1.9937 �211.5 �125.4
1.00 0.1425 0.2863 2.0091 �200.8 �118.7
0.90 0.1410 0.2863 2.0305 �184.8 �109.1
0.75 0.1374 0.2863 2.0837 �156.2 �91.7
0.50 0.1251 0.2860 2.2862 �144.7 �83.5

Table 4 Times at which absolute values of stresses reach
maximum

h /h1 �h1=21.75 m� tmax�s� for �s tmax�s� for ��

1.25 84.1 84.1
1.10 84.4 84.4
1.00 63.6 63.6
0.90 57.0 57.0
0.75 36.3 36.3
0.50 23.5 27.5

Fig. 7 Responses of stresses „the case in which internal reso-
nance is not present, h=10.875 m; thin lines, linear; thick lines,
nonlinear…. „a… Radial bending stress �s at outer end „r ,�…
= „b ,0… of bottom of pontoon. „b… Hoop membrane stress �� at
the same position.
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the internal resonance effects on the stresses and sloshing wave
height noted in the case of sinusoidal excitation appear when a
broad-band real earthquake excitation is applied; and �3� the
stresses can be reduced by decreasing the slope angles of the top
and bottom of the pontoon.

The influence of internal resonance on the stresses in a floating
roof was not studied in the past. The nonlinear analysis tool de-
veloped in this study based on the mode decomposition is helpful
for predicting the internal resonance effect on the stresses. Fur-
thermore, the tool is computationally-efficient and requires a
small amount of computation time and cost to predict the magni-
tudes of the stresses and to conduct the parametric studies for
reducing the stresses.

Appendix A: Derivation of Eq. (3)
A detailed derivation of Eq. �3� is presented because Eq. �3�

forms the cornerstone of this paper. We first substitute Eq. �2� into
Eq. �1� and calculate the variation of the functional. We must
consider the variation for the liquid domain as well as for the
liquid pressure because the liquid domain is variable �18�. The
variation d��V� is related to the displacement ū of the floating roof
in the −z direction as follows:

d��V� = − �ū cos�NS,z�dS �A1�

where NS is the outward unit normal vector of the interface S
between the liquid and the floating roof, and cos�NS ,z� is the
cosine of the angle between NS and the z direction. By using Eq.
�A1�, the variation of the functional given by Eq. �1� can be ex-
pressed as

��
t1

t2

Lfdt =�
t1

t2 �� � �
V

�pldV −� �
S

pl�ū cos�NS,z�dS�dt

�A2�

Using Eq. �2�, the term with �pl can be expressed as

�
t1

t2�� �
V

�pldVdt =�
t1

t2�� �
V

�− � f�� �����
�t

+ �� · �����

+ �Ġ�dVdt �A3�

For further transformation of Eq. �A3�, the following relations
hold:

�� �
V

�����
�t

dV =
�

�t�� �
V

��dV +� �
S

��
� ū

�t
cos�NS,z�dS

�A4�

� � �
V

���G�
�t

dV =
�

�t�� �
V

�GdV +� �
S

�G
� ū

�t
cos�NS,z�dS

�A5�

Fig. 8 Earthquake ground motion record „2003 Tokachi-oki,
HKD129EW…: „a… acceleration record; „b… Fourier transform of
the acceleration record divided by squared angular frequency

Fig. 9 Responses to an actual earthquake ground motion
record 2003 Tokachi-oki „thin lines, linear; thick lines, nonlin-
ear…. „a… Vertical displacement of floating roof at outer rim of
pontoon; „b… radial bending stress �s at outer end „r ,�…
= „b ,0… of bottom of pontoon. „c… Hoop membrane stress �� at
the same position.
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�� �
V

�� · �����dV =� �
S

�� · NS��dS

+� �
W

�� · NW��dW

−�� �
V

�2���dV �A6�

Equations �A4� and �A5� arise from the fact that the time deriva-
tive of an integral over a time-varying domain �the first term on
the right-hand side of each equation� is equal to the sum of an
integral of the time derivative of the integrand over the instanta-
neous domain �the left-hand side of each equation� and an integral
of the outward flux of the integrand over the moving boundary
surface. Equation �A6� can be derived by using Green’s theorem.
In Eq. �A6�, W is the wall and bottom of the tank and NW is the
outward unit normal vector of W.

Substituting Eqs. �A4�–�A6� into Eq. �A3� and noting that ��
=�G=0 at the time integration limits t= t1 and t= t2, we transform
Eq. �A2� into

��
t1

t2

Lfdt =�
t1

t2 �� f�� �
V

�2���dV − � f� �
W

�� · NW��dW

+ � f� �
S


−
� ū

�t
cos�NS,z� − �� · NS���dS

−� �
S

pl�ū cos�NS,z�dS

− � f�G� �
S

� ū

�t
cos�NS,z�dS�dt �A7�

Because the interface S is expressed by f�r ,� ,z , t��z+ ū�r ,� , t�
−h=0 and the position vector of S is given by X=exr cos �
+eyr sin �+ez�h− ū�r ,� , t��, the nonlinear expressions of the nor-
mal vector NS and the surface element dS can be obtained as
follows:

NS =
grad f

	grad f 	
= �er

� ū

�r
+ e�

1

r

� ū

��
+ ez��
 � ū

�r
�2

+ 
1

r

� ū

��
�2

+ 1�−1/2

�A8�

dS = � �X

�r
�

�X

��
�drd� = �
 � ū

�r
�2

+ 
1

r

� ū

��
�2

+ 1�1/2

rdrd�

�A9�

Substituting Eqs. �A8� and �A9� into Eq. �A7�, we obtain the first
through fourth, sixth, and eighth terms of Eq. �3�.

Next, the motion of the floating roof is formulated based on the
finite element approach using the ring shell elements. A nodal
displacement vector is defined for a node i and is decomposed into
two components with different circumferential variations as fol-
lows:

�
ūi

v̄i

w̄i


 �w̄

�s
�

i

� = �
m=0

� �
ūmx,i cos m� + ūmy,i sin m�

v̄mx,i sin m� − v̄my,i cos m�

w̄mx,i cos m� + w̄my,i sin m�


 �w̄

�s
�

mx,i

cos m� + 
 �w̄

�s
�

my,i

sin m�
�
�A10�

By calculating the kinetic and potential energies following the
procedure of the finite element method, the variation in the action
for the floating roof can be expressed as

��
t1

t2

Lrdt = ��
t1

t2 1

2�
m=0

�

��Ẋmx
t MmẊmx − Xmx

t KmXmx� + �Ẋmy
t MmẊmy

− Xmy
t KmXmy��dt =�

t1

t2

�
m=0

�

�− �Xmx
t �MmẌmx

+ KmXmx� − �Xmy
t �MmẌmy + KmXmy��dt �A11�

where Mm and Km are the mass and stiffness matrices, and Xmx
and Xmy are the collections of �ūmx,i , v̄mx,i , w̄mx,i , ��w̄ /�s�mx,i�t and
�ūmy,i , v̄my,i , w̄my,i , ��w̄ /�s�my,i�t, respectively. The mass and stiff-
ness matrices are common to both Xmx and Xmy. Because the
dimension of these matrices is very large, much computation time
and cost are required to transform the equations of motion ex-
pressed in terms of the nodal displacements into modal equations.
To solve this problem, the floating roof is decomposed into several
components c�c=1,2 ,3 , . . .�, and their equations of motion are as
follows:

MmcẌmxc + KmcXmxc = 0 �A12�

Equation �A12� is expressed in the following form:

�Mmc11 Mmc12

Mmc21 Mmc22
�
Ẍmxc1

Ẍmxc2

� + �Kmc11 Kmc12

Kmc21 Kmc22
�
Xmxc1

Xmxc2
� = 
0

0
�

�A13�

where Xmxc1 is the collection of the displacements of the nodes
that are not at the joints with the adjacent components while Xmxc2
is the collection of the other nodal displacements. The eigenmodes
of Xmxc1 under the condition that Xmxc2 is fixed to zero can be
determined by solving the eigenvalue problem �A14�, while the
static solution of Xmxc1 for the case in which Xmxc2 is arbitrarily
given can be obtained as Eq. �A15� by neglecting the inertia term
of Eq. �A13�.

�− 
2Mmc11 + Kmc11�Xmxc1 = 0 �A14�

Fig. 10 Nonlinear responses of stresses „the case in which
slope angles of pontoon are reduced…. „a… Radial bending
stress �s at outer end „r ,�…= „b ,0… of bottom of pontoon. „b…
Hoop membrane stress �� at the same position.
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Xmxc1 = − Kmc11
−1 Kmc12Xmxc2 �A15�

Expressing Xmxc1 by the sum of the linear combination of the
eigenmodes and the static solution yields,


Xmxc1

Xmxc2
� = �Tmc11 − Kmc11

−1 Kmc12

O I
�
qmxc1

Xmxc2
� �A16�

where Tmc11 is the modal transformation matrix whose columns
are the eigenvectors of the eigenvalue problem �A14� and qmxc1 is
the modal coordinates. The dimension of qmxc1 and Xmxc2 can be
made much smaller than the dimension of Xmxc1. Therefore, the
dimension of the numerical problem to be solved can be markedly
reduced by the transformation �A16�. By defining

Cmc = �Tmc11 − Kmc11
−1 Kmc12

O I
�, Xmxc� = 
qmxc1

Xmxc2
� �A17�

Equation �A16� can be expressed as

Xmxc = CmcXmxc� �A18�

Repeating the foregoing procedures for each component c�c
=1,2 ,3 , . . .�, the global form of Eq. �A18� for the whole floating
roof structure can be obtained as

Xmx = CmXmx� �A19�

Similarly, the corresponding equation Xmy =CmXmy� can be ob-
tained for the displacement components with subscript y. By sub-
stituting these equations into Eq. �A11� and defining the following
matrices:

Mm� = Cm
t MmCm, Km� = Cm

t KmCm �A20�
we can derive the fifth term of Eq. �3�. The seventh term of Eq. �3�
can be derived by considering the virtual work done by the inertial
force for each element of the floating roof.

Appendix B: Validity of Damping Term �� �z=h Used in
Numerical Calculation

Letting Em� and Am� be the collections of Emp� �p=1,2 , . . .�
and Amn� �n=1,2 , . . .�, respectively, for �=x and y, linear homo-
geneous terms of Eqs. �9� and �10� can be expressed in the fol-
lowing form:

− M̃mËm� − K̃mEm� + Cm
�1�Äm� − Cm

�2�Em� = 0 �B1�

− Cm
�4�Ëm� − Cm

�5�Äm� = 0 �B2�

where M̃m and K̃m are the modal mass and stiffness matrices of
the floating roof uncoupled with the liquid motion and Cm

�1� etc.
are constant matrices. By adding the damping term �� 	z=h to the
quantity in the brace of Eq. �3�, Eq. �B1� is modified to

− M̃mËm� − K̃mEm� + Cm
�1�Äm� + �mCm

�1�Ȧm� − Cm
�2�Em� = 0

�B3�

where �m is the diagonal matrix whose nth diagonal element is
equal to 2�mn
mn. Solving Eq. �B2� with respect to Am� and sub-
stituting the resulting equation into Eq. �B3�, we obtain

m̂mÄm� + ĉmȦm� + k̂mAm� = 0 �B4�
where

m̂m = M̃m�Cm
�4��−1Cm

�5� + Cm
�1� �B5�

ĉm = �mCm
�1� �B6�

k̂m = K̃m�Cm
�4��−1Cm

�5� + Cm
�2��Cm

�4��−1Cm
�5� �B7�

By using the eigenvectors of m̂m
−1k̂m, the following transformation

can be made:

Am� = Smpm� �B8�

where Sm is the collection of the eigenvectors and pm� is the
collection of the modal coordinates for these eigenvectors. Substi-
tuting Eq. �B8� into Eq. �B4� and premultiplying by Sm

−1m̂m
−1, we

obtain

p̈m� + Sm
−1�m̂m

−1ĉm�Smṗm� + Sm
−1�m̂m

−1k̂m�Smpm� = 0 �B9�

Because the mass of the floating roof is much smaller than the
liquid mass, the first term of Eq. �B5� can be neglected. Hence, the
coefficient of the damping term of Eq. �B9� can be approximated
as

Sm
−1�m̂m

−1ĉm�Sm � Sm
−1�mSm �B10�

The matrix Sm is diagonally dominant because for the nth eigen-

vector, the nth component Ȧmn� is predominant to the other com-

ponents Ȧmn�� �n��n� as mentioned in Sec. 2.3. Therefore,
Sm

−1�mSm is diagonally dominant and its nth diagonal components

is close to 2�mn
mn. The coefficient Sm
−1�m̂m

−1k̂m�Sm of pm� in Eq.
�B9� is a diagonal matrix whose nth diagonal element is close to

mn

2 =g�mn tanh��mnh� as mentioned in Sec. 2.3. Hence, Eq. �B9�
indicates that the damping ratio �mn is introduced into the sloshing
mode with eigenfrequency 
mn.
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Shape of a Soft Container Under
Hydrostatic Load
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This paper concerns an open container, formed by bending length-
wise a long strip of weightless nonstretchable impermeable fabric
and holding its long edges parallel and horizontal. Given that the
container is filled to the rim with fluid, closed form analytical
solution is obtained for the capacity of the container and the
shape of its envelope. �DOI: 10.1115/1.3173765�

Keywords: soft vessel, underwater lifting device, nonlinear shell
theory, inextensible beamshell

1 Introduction
Vessels made of soft impermeable fabric come in multitude of

shapes and have multitude of uses. In particular, they can be used
as containers for fluid �1,2�, or as underwater lifting devices. This
short exposition addresses a long �actually, infinitely long� canal-
like tub, formed by bending lengthwise a strip of weightless non-
stretchable fabric and sealing its open ends. The long edges are
fixed straight, horizontal, and parallel to each other. The tub is
either filled to the rim with fluid �Fig. 1� to be used as a container,
or submerged in fluid and filled full with air to be used as an
underwater lifting device. We seek the shape of the tub’s cross
section and its capacity.

2 Formulation
For the sake of definiteness, select an auxiliary rectilinear co-

ordinate system C with the x-axis connecting the two long edges
across the opening, the z-axis midway between the long edges and
parallel to them, and the y-axis pointing to the same side to which
the envelope extends �i.e., along the direction of gravity if the
fluid within the envelope is denser than the fluid outside it�.

Let l, x0, �, and g be the width of the fabric forming the tub,
half the distance between its long edges �it is implicitly under-
stood that 2x0� l�, the �absolute� difference between the density
of the fluid within the tub and the fluid outside it, and the accel-
eration of gravity, respectively.

With respect to C, the cross section shape of the tub can be
defined by the pair of �yet unknown� functions on �0, l�, xs and ys,
such that for any t in �0, l�

x = xs�t�, y = ys�t� �1�

Without a loss of generality it will be assumed henceforth that t
represents the distance from one of the edges measured along the
envelope �the arc-length�. In this case these two functions satisfy

xs�
2 + ys�

2 = 1 �2�

on �0, l�, where the prime stands for the respective derivative.
Moreover, by the choice of the coordinate system

xs�0� = − xs�l� = − x0, ys�0� = ys�l� = 0 �3a�

xs�l/2� = 0, ys��l/2� = 0 �3b�
Because of the difference in the densities of the fluid in the

interior and in the exterior of the tub, hydrostatic pressure

ps = �gys �4�

acts on its envelope. We seek the functions xs and ys.

3 Solution
Pertinent equations governing these two functions can be found

in Ref. �3�; for completeness of this presentation, they are reca-
pitulated below.

Let Ts be a scalar-valued function on �0, l�, representing the
tension in the envelope. Referring to Fig. 1, equilibrium condi-
tions �the y- and x-components of the force balance� for an infini-
tesimally small element of the envelope are

psxs� + �Tsys��� = 0 �5a�

psys� − �Tsxs��� = 0 �5b�

These two equations can be straightforwardly solved for Ts and Ts�
to obtain

Ts = − ps

xs�
2 + ys�

2

ys�xs� − xs�ys�
�6a�

Ts� = − ps

xs�xs� + ys�ys�

ys�xs� − xs�ys�
�6b�

But

2�xs�xs� + ys�ys�� = �xs�
2 + ys�

2�� = 0 �7�

by Eq. �2�, and therefore Ts� is identically zero on �0, l� by Eq.
�6b�. Consequently,

Ts�t� = T0 �8�

for each t in �0, l�; T0 is yet unknown. Since only normal forces
act on the envelope, Eq. �8� could have been anticipated. At the
same time, using Eqs. �8�, �4�, and �2�, Eq. �6a� can be recast as

ys�xs� − xs�ys� +
�gys

T0
= 0 �9�

Adjusting the notation, Eqs. �8� and �9� can be identified with the
respective equations �O.24� in Ref. �3�.

In order to proceed we suggest multiplying Eq. �9� by ys�. Not-
ing that

�ys�xs� − xs�ys��ys� = − xs��xs�
2 + ys�

2� = − xs� �10�

by Eqs. �2� and �7�, and, of course, that 2ysys�= �ys
2��, the resulting

equation

− xs� +
�g

2T0
�ys

2�� = 0 �11�

can be readily integrated to obtain

xs� =
�gys

2

2T0
+ C1 �12�

where C1 is an unknown constant �in addition to T0�.
Substituting this equation back in Eq. �2� yields a simple first-

order equation for ys

ys�
2 = 1 − ��gys

2

2T0
+ C1�2

�13�

Before actually solving it, we would like to use it in order to
interpret C1 in terms of meaningful quantities. In fact, at the
middle of the envelope �where t= l /2�, the left hand side of Eq.
�13� vanishes by symmetry considerations �see Eq. �3b��, whereas
ys�l /2�=y0, which is the maximal draft of the tub. Hence
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C1 = � 1 −
�gy0

2

2T0
�14�

But ys�t��y0 for any t in �0, l�, and therefore the choice of the
minus sign in Eq. �14� yields negative values on the right hand
side of Eq. �13�, which are inadmissible.

With the plus sign in Eq. �14�, Eq. �13� can be recast as

ys� = � 2k��1 − k2�1 −
ys

2

y0
2���1 −

ys
2

y0
2� �15�

where the sign switches between the right and left sides of the
envelope, and

k2 = �gy0
2/�4T0� �16�

is a convenient dimensionless �but yet unknown� parameter. Con-
currently

xs� = 1 − 2k2�1 −
ys

2

y0
2� �17�

by Eqs. �12�, �14�, and �16�. We emphasize that at this stage both
y0 and k, which replace T0 and C1 as integration constants, are
unknown.

Let �s be an auxiliary function on �0, l� into �−� /2,� /2�, such
that for each t in �0, l�

ys�t� = y0 cos��s�t�� �18�
With this, Eqs. �15� and �17� take on the respective forms

�s� = −
2k

y0

�1 − k2 sin2 �s �19�

xs� = 1 − 2k2 sin2 �s �20�

Integrating Eq. �19� between t= l /2 �where �s=xs=0� and any t
yields

t

l
=

1

2
�1 +

y0

l

F��s�t�,k�
k

� �21�

where F�� ,k�=�0
���1−k2 sin2 ��−1d� is an incomplete elliptic in-

tegral of the first kind �4, Art. 8.111�. Similarly, integrating the
ratio of Eqs. �19� and �20�

d�s

dxs
= −

2k

y0

�1 − k2 sin2 �s

1 − 2k2 sin2 �s
�22�

in the same limits yields

xs

y0
=

E��s,k�
k

−
F��s,k�

2k
�23�

where E�� ,k�=�0
���1−k2 sin2 ��d� is an incomplete elliptic inte-

gral of the second kind �4�.
At the edge t= l of the envelope, xs�l�=x0, t− l /2= l /2, and

�s�l�=� /2, and hence Eqs. �21� and �23� reduce to

y0

l
=

k

K�k�
�24�

x0

y0
=

E�k�
k

−
K�k�
2k

�25�

where E�k�=E�� /2,k� and K�k�=F�� /2,k� are the respective
complete integrals. Since both x0 and l are known, the product of
Eqs. �25� and �24� provides the equation

E�k�
K�k�

=
1

2
+

x0

l
�26�

for k. Its �numerical� solution

k = ��x0/l� �27�

can be found in Fig. 2�a�.
Once k is related with the ratio x0 / l, the rest is simple. In

particular

T0 =
�gl2

4K2�k�
�28�

by Eqs. �16� and �24�, whereas the shape of the envelope can be
reconstructed with

xs

l
=

E��s,k�
K�k�

−
1

2

F��s,k�
K�k�

�29a�

ys

l
=

k

K�k�
cos �s �29b�

t

l
=

1

2
�1 +

F��s,k�
K�k� � �29c�

The first of these is the conjunction of Eqs. �23� and �24�; the
second is the conjunction of Eqs. �18� and �24�; and the last is the
conjunction of Eqs. �21� and �24�. Practically, the one-to-one cor-
respondence �Eq. �29c�� between t and �s�t� can be discarded, and
�s be treated in Eqs. �29a� and �29b� as an independent variable
spanning the interval �−� /2,� /2�.

Knowledge of the tension allows quick computation of the area
V contained within the envelope. In fact, the “weight” �per unit
length� of the fluid contained within the envelope �Vg should be

xx0-x0

y0

y

t� �
sx t � �dsx t t�

� �
sy t
� �dsy t t�

� �dsT t t�

� �sT t

� �
sp t

�

Fig. 1 The tub „right… and the element of its envelope
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Fig. 2 Following clockwise from the upper left corner, dis-
played in the figure are the solution „Eq. „27…… of Eq. „26…, the
tension in the envelope „Eq. „28……, the draft „Eq. „24……, and the
area „Eq. „30……. The dashed lines are approximations.
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equal to the y-component of the force applied to the envelope at
its edges 2T0ys��0�. But ys��0�=2k�1−k2 by Eqs. �15� and �3a�,
whereas T0 is given by Eq. �28�. Hence

V = l2k�1 − k2

K2�k�
�30�

It is shown in Fig. 2�b�. For future reference we also note that

xs��0� = 1 − 2k2 �31�
by Eq. �21�.

4 Analysis
Sample shapes of the tub’s section can be found in Fig. 3 for

few values of 2x0 / l, which is the ratio of the distance between the
edges to the length of the envelope. Several observations are note-
worthy:

The edges of the tub become vertical when k=1 /�2, i.e., when
2x0 / l=2E�1 /�2�K−1�1 /�2�−1	0.457. The first of these rela-
tions immediately follows Eq. �31�; the second immediately fol-
lows the first by Eq. �26�. For smaller values of 2x0 / l, the tub is
wider than the distance between its edges �i.e., it looks like a
balloon�, while for larger values, the tub is contained between its
edges.

The maximum area of the tub for a given length l of the enve-
lope, approximately 0.157l2, is obtained when k=k�	0.582,
which is the root of

E�k�
K�k�

=
3

2
− 2k2 �32�

It corresponds to 2x0 / l=2−4k�
2	0.643. Equation �32� follows the

differentiation of Eq. �30� with respect to k; the last relation fol-

lows Eq. �32� by Eq. �26�; the volume itself is obtained by sub-
stituting k� in Eq. �30� This optimal �volumewise� distance be-
tween the edges is rather surprising since it corresponds to a
relatively shallow-draft tub, fully contained between its edges.

When the edges are brought toward each other, the area of the
tub becomes comparable with �albeit somewhat smaller than� the
area l2 /4��1+2�x / l��2 of a circle having the same circumference.
This reference is shown by the dashed line in Fig. 2�b�.

Remarkably simple, almost linear, behavior of the envelope ten-
sion with the distance between the edges suggests that it can prob-
ably be approximated analytically. Thus, with 2x0 / l=1−k2+¯,
by Eq. �26�, and T0= ��gl2 /�2��1−k2 /2+¯�, by Eq. �28�, one
readily finds that T0= ��gl2 /�2���1 /2�+ �x0 / l�+¯�. This approxi-
mation is shown by the dashed line in Fig. 2�c�. Note that the
maximal tension in the envelope �gl2 /�2 is obtained in the limit
when it is opened flat �2x0→ l�, whereas the minimal tension is
obtained when the edges touch.

The maximum draft of the tub for a given length l of the enve-
lope, approximately 0.403l, is obtained when k=k+	0.837, which
is the root of

E�k�
K�k�

= 2 − 2k2 �33�

It corresponds to 2x0 / l=3−4k+
2 	0.195. Equation �33� follows the

differentiation of Eq. �24� with respect to k; the last relation fol-
lows Eq. �33� by Eq. �26�; the draft itself is obtained by substitut-
ing k+ in Eq. �24�.
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The use of constitutive equations to describe the electromechani-
cal behavior of electrostrictive materials began over 100 years
ago. While these equations have been used to model a host of
ceramic-based and polymer-based electroactive materials, a fully
characterized model has not yet been developed to predict the
response of transversely isotropic polymer electrostrictives. A con-
stitutive model is developed within a thermodynamic and hyper-
elastic framework that incorporates the transversely isotropic ma-
terial symmetry that is present in many polymer-based
electrostrictives. The resulting constitutive model is characterized
for three electrostrictive polymer systems using empirical data
that are available in the literature. The model has a relatively
simple functional form that is easily adaptable to other polymer
electrostrictive material systems. �DOI: 10.1115/1.3173766�

Keywords: electroactive materials, electrostriction, MEMS, poly-
urethane elastomers

1 Introduction
Polymer-based electrostrictive materials became a focal point

of research for applications that require large magnitudes of ac-
tuation and significant weight-savings �1–23�. These applications
range from microelectromechanical systems �MEMS� to artificial
muscles. The use of these materials in engineering applications
requires accurate and flexible constitutive relations to relate loads,
deformation, electric displacement, and applied electrical field.

In the late 19th century and the early part of the 20th century,
several studies reported a relationship between the applied electric
field, stress field, and strain field for cylindrical condensers
�24–33�. In the middle portion of the 20th century, many scholars
studied the broader applications of electrostrictive materials and
established more specific definitions of electrostrictive behavior.
In 1941, Stratton �34� defined electrostriction as simply the elastic
deformation of a dielectric under the forces exerted by an electro-
static field. However, numerous authors �35–42� generally agreed
that electrostrictive materials exhibit a constitutive behavior that
can be described in a thermodynamic framework. More recently,
many studies employed this thermodynamic framework for elec-
trostrictive materials �43–56�.

The objective of this study is to establish a hyperelastic frame-
work for modeling polymer-based electrostrictive materials with
transverse-isotropic material symmetry. The resulting constitutive
model is characterized for three electrostrictive polymer systems
using empirical data that are available in the literature. The ther-

modynamic framework of the modeling approach is established
first followed by the characterization of material parameters.

2 Kinematics and Balance Laws
Consider a region of a material manifold R embedded in a

three-dimensional Euclidean space with its volume enclosed by
the surface �R. A material point of the region in its reference state
is located by its rectangular coordinate vector X at time t=0,
whose components are taken with respect to the mutually perpen-
dicular basis set e= �e1 ,e2 ,e3�. For any time t�0, the region de-
forms to the spatial configuration Rt with surface �Rt. The coor-
dinate of the material point in the spatial configuration is given by
the vector x. The coordinates in the reference and spatial configu-
rations are related by

x = ��X,t� �1�
The deformation gradient tensor is given by

FiK =
�xi

�XK
�2�

The right Cauchy–Green deformation tensor is defined as C
=FTF, whose eigenvalues are the squares of the principal stretches
associated with the deformation of Eq. �1�. The region is subjected
to an electric field vector denoted in R as the Lagrangian electric
field E.

Over R, the mass balance is

�̇ = 0 �3�

where the superposed dot indicates a material derivative and � is
the mass density of the material. The balance of linear momen-
tum, assuming static conditions and no body forces, is

div FS = o �4�
where div is the divergence operator with respect to the reference
configuration, S is the second Piola–Kirchhoff stress tensor, and o
is the null vector. The angular momentum balance of the system is
simply the proof of the symmetry of the second Piola–Kirchhoff
stress tensor.

S = ST �5�
These three balance principles can be easily established using
standard techniques �57,58�. The energy balance in the reference
configuration, which includes the energy of the electric field, is
�39,59–61�

− �U̇ + �1/2�S:Ċ + E · Ḋ + div Q + �h = 0 �6�

where U is the specific internal energy, D is the Lagrangian elec-
tric displacement vector, Q is the heat flux vector, and h is the
volumetric thermal heat source. It has been shown that E and D
are work conjugates for a deformable dielectric �62�. The second
law of thermodynamics for the reference configuration is �59�

��̇ −
1

�
div Q + � 1

�2�Q · grad � −
�h

�
� 0 �7�

where � is the temperature and grad is the gradient function with
respect to the reference configuration. The free energy of the sys-
tems is defined as �59�

� = U − �� − �1

�
�E · D �8�

The Clausius–Duhem inequality is established by substitution of
Eqs. �6� and �8� into Eq. �7�

− ���̇� + �̇� + �1/2�S:Ċ − Ė · D + �1

�
�Q · grad � � 0 �9�

Therefore, Eqs. �3�–�6� constitute 8 scalar field equations for 22
scalar quantities ��, S, x, D, �, �, E, and � with h prescribed�.
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Therefore, 14 constitutive equations are required to completely
describe the electromechanical behavior of the material.

The appropriate boundary conditions of the electric field and
the electric displacement vector are important in the solution of
boundary value problems. It has been shown �63� that in the ab-
sence of surface charges the normal component of the electric
displacement and the tangent component of the electric field with
respect to �R must be continuous across �R.

3 Constitutive Modeling
Similar to Eringen �59�, it is assumed that the thermodynamic

forces for R are C, E, and �. Therefore, the remaining parameters
are thermodynamic fluxes, and these are used to establish the
following constitutive relations:

S = Ŝ�C,E,�� �10a�

D = D̂�C,E,�� �10b�

� = �̂�C,E,�� �10c�

� = �̂�C,E,�� �10d�

where �=��, and use has been made of the principle of equipres-
ence �57,58� in which a variable present as an independent vari-
able in one constitutive equation is present in all other constitutive
equations. Expanding Eq. �10d�,

�̇ =
��̂�C,E,��

�C
:Ċ +

��̂�C,E,��
�E

· Ė +
��̂�C,E,��

��
�̇ �11�

Substitution of Eq. �11� into Eq. �9� yields

	1

2
S −

��̂�C,E,��
�C


:Ċ − 	D +
��̂�C,E,��

�E



· Ė − 	 ��̂�C,E,��
��

+ ��
�̇ + �1

�
�Q · grad � � 0 �12�

In general, this modified form of the Clausius–Duhem inequality

must hold for arbitrary values of the thermodynamic forces Ċ, Ė,

and �̇. Therefore,

S = 2
��̂�C,E,��

�C
�13a�

D = −
��̂�C,E,��

�E
�13b�

�� = −
��̂�C,E,��

��
�13c�

�1

�
�Q · grad � � 0 �13d�

These equations represent general forms of the constitutive equa-

tions. The specific form of �̂ depends on the assumptions of
material symmetry and behavior.

Whereas many electroactive materials are crystalline �e.g., pi-
ezoelectrics�, most electrostrictive polymers are composed of
amorphous regions that contain small electroactive crystallites at-
tached to polymer chains �19–23�. A schematic of the molecular
structure of a typical electrostrictive polymer is shown in Fig. 1.
Although the crystallites themselves are electroactive, the overall
material cannot exhibit a bulk electrostrictive effect unless the
crystallites are aligned using a biasing field during processing so
that their electroactively induced strains all act in the same direc-
tion with respect to an applied electric field. A schematic of the

molecular structure of a polarized electrostrictive polymer is
shown in Fig. 2. As shown in Fig. 2, the direction of polarization
of the electrostrictive polymer creates an axis of symmetry. Along
this axis, the crystallites are oriented normal to the axis of sym-
metry. Each crystallite is oriented at a statistically random angle
about the axis of symmetry. For a bulk sample of the electrostric-
tive polymer, the statistical orientation of the crystallites results in
reflectional and rotational symmetries with respect to the axis of
symmetry �Fig. 2�. With these material symmetries, the bulk elec-
trostrictive polymer is classified as a transversely isotropic mate-
rial �64�. It will be henceforth assumed that the axis of symmetry
of R is aligned with the e1 basis vector.

For the given material symmetry and symmetry axis vector, a
set of scalar invariants for C include I1=tr�C�, I2=1 /2��tr C�2

−tr�C2��, I3=det C, I4=C11, and I5=C12
2+C13

2, where tr� • � de-
notes the trace operator �64�. The scalar invariants for the vector E
are E1 and E2

2+E3
2. Scalar invariants for the coupling of C and E

are E	C1	, E	C	
C1
, and E	C	
E
, where subscripts 	 and 

have values of 2 and 3 and obey the summation convention. To-
gether with the scalar invariant � for temperature, a total of 11
invariants can be used to formulate the functional form of the
constitutive equation �10d�.

To simplify this process of establishing a functional form of the
constitutive equation �10d�, some additional assumptions need to
be made regarding the material behavior. First, it has been shown
�23� that while electroactive responses tend to be linear with �,
dielectric responses appear to be nonlinear with �. Second, it has
been observed that electrostrictive materials do not exhibit a re-
verse electroactive effect �36�. That is, an electric displacement is
not generated when a mechanical load is applied to the material in
the absence of an electric field, as is observed in piezoelectric
materials. Third, residual electric displacements are observed for
electroactive polymers that have been polarized �23�. The polar-
ization of the material results in a nonzero D vector when the
electric field vanishes. Fourth, electrostrictive materials exhibit a
response that depends on E1

2, while piezoelectric materials exhibit

Fig. 1 Schematic of the molecular chains in an unpolarized
electrostrictive polymer

Fig. 2 Molecular structure of a polarized electrostrictive poly-
mer „left… and the resulting bulk-level material symmetry „right…
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a dependence on E1. Fifth, electrostrictive polymers tend to be
elastomeric and thus incompressible. Finally, no electroactive re-
sponse is expected for the case in which E1=0. With these as-
sumptions and the invariants given above, the free-energy density
is postulated to be

� = A1 + A2 + A3 + A4 �14�

where A1, A2, A3, and A4 are the elastic, electrostrictive, dielectric,
and residual electric displacement responses, respectively. The
elastic response is given by

A1 = 1
2 �	1 + 	2T��I1 − 3� + 1

2 �	3 + 	4T��I2 − 3� + 1
2	5TI1

− 1
2 p�I3 − 1� �15�

The electrostrictive response is

A2 = − 1
2 �	6 + 	7T�E1

2�I4 − 1� �16�

The dielectric response is

A3 = − 1
2 �	8 + 	9T + 	10T

2�E1
2 − 1

2 �	11 + 	12T + 	13T
2��E2

2 + E3
2�

�17�

The residual electric displacement is established with

A4 = − D0E1 �18�

In Eqs. �15�–�17�, 	1 ,	2 , . . . ,	13 are material parameters, D0 is
the residual electric displacement, and T is the change in the am-
bient temperature T0 resulting in the current absolute temperature
� ��=T0+T�. The first two terms on the right-hand side of Eq.
�15� are the Mooney–Rivlin response of the material �with
temperature-dependent material properties�, the third term intro-
duces the thermal expansion coefficient 	5 and the last term en-
forces incompressibility with the Lagrange multiplier p. Substitu-
tion of Eqs. �14�–�18� into Eqs. �13a� and �13b� yields the
constitutive equations for the stress tensor

S = ��	1 + 	2T� + I1�	3 + 	4T� + 	5T�I − �	3 + 	4T�C − pI3C−1

− �	6 + 	7T�E1
2�e1 � e1� �19�

and the electric displacement vector components

D1 = �	6 + 	7T�E1�I4 − 1� + �	8 + 	9T + 	10T
2�E1 + D0

�20a�

D2 = �	11 + 	12T + 	13T
2�E2 �20b�

D3 = �	11 + 	12T + 	13T
2�E3 �20c�

where I is the identity tensor. Note the nonlinear dependence of
E1 and I4 on D1 in Eq. �20a�. The stress components S11, S22, S33,
S23, S13, and S12 are expected to vanish in the undeformed state
with no applied electrical field and temperature change �C
=I , I1=3, I4=1, E=o , T=0�. Under this condition, Eq. �19�
reveals

p = 	1 + 2	3 �21�

To simplify these expressions, the following quantities are defined
as follows:


1�T� = 	1 + 	2T �22a�


2�T� = 	3 + 	4T �22b�


3�T� = 	5T �22c�


4�T� = 	6 + 	7T �22d�


5�T� = 	8 + 	9T + 	10T
2 �22e�


6�T� = 	11 + 	12T + 	13T
2 �22f�

which are clearly temperature-dependent material properties,
which are necessary to model with polymer materials below the
glass transition temperature. Substitution of Eqs. �22a�–�22f� into
Eqs. �19� and �20a�–�20c� results in a modified form of the con-
stitutive equations for stress

S = �
1 + I1
2 + 
3�I − 
2C − pI3C−1 − 
4E1
2�e1 � e1� �23�

and electrical displacement

D1 = 
4E1�I4 − 1� + 
5E1 + D0 �24a�

D2 = 
6E2 �24b�

D3 = 
6E3 �24c�
where the temperature arguments associated with the temperature-
dependent material parameters have been removed for brevity.
Equations �23� and �24a�–�24c� describe the general three-
dimensional electromechanical behavior of an incompressible
electrostrictive polymer material. Equation �14� can be expressed
in terms of the temperature-dependent parameters of Eqs.
�22a�–�22f�.

� = 1
2
1�I1 − 3� + 1

2
2�I2 − 3� + 1
2
3I1 − 1

2 p�I3 − 1� − 1
2
4E1

2�I4 − 1�

− 1
2
5E1

2 − 1
2
6�E2

2 + E3
2� − P0E1 �25�

Equation �25� is in a form that can be conveniently used to deter-
mine the response for specific electrostrictive polymer materials,
which is demonstrated in Sec. 4.

4 Material Parameters
To demonstrate the functionality of the proposed constitutive

model, the material parameters need to be quantitatively estab-
lished for a sampling of electrostrictive polymer materials. Using
data from the literature �20�, the values of some of the material
constants in Eqs. �23� and �24a�–�24c� have been determined at
room temperature for three electrostrictive polyurethane material
systems: PS 2000, PS 1000, and PM 2000. Details on these ma-
terial systems may be found elsewhere �20�. The electromechani-
cal properties of the materials were established by equating the
mechanical components of the free-energy density given by Eq.
�25� with an equivalent expression found elsewhere �65�, with
which the material parameters from the literature �20� have been
characterized. The equating of the free energies was performed for
four different boundary conditions: shear deformation with no ap-
plied electric field, axial elongation with no applied electric field,
transversely applied electric field, and axial elongation with an
applied electric field. It is important to note that the energy ex-
pression from the literature �65� was not established in a large-
deformation hyperelastic framework, so the applied deformations
in the current analysis were relatively small.

For each prescribed deformation and electric field, material pa-
rameters were determined by minimizing the sum of the squares
of the errors between the free energies from the proposed model
and those found in the literature. The material parameters were
iteratively updated to minimize the differences in the free ener-
gies. As a result, the proposed model was characterized for the
three material systems. The applied isochoric deformations and
electric fields were specifically chosen to efficiently determine the
material parameters in the constitutive equations given by Eqs.
�23� and �24a�–�24c�. The details of each deformation are given
below.

4.1 Shear Deformation With No Applied Electric Field.
For the case of simple shear deformation at the ambient tempera-
ture and no applied electric field �E=o�, Eq. �1� is

x1 = X1 + �X2 �26a�

x2 = X2 �26b�
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x3 = X3 �26c�

where � is the shear strain. The components of C with respect to
the basis set are C11=C33=1, C22=1+�2, C12=�, and C23=C13
=0. Based on these assumptions, Eq. �25� simplifies to

� = 1
2 �
1 + 
2��2 �27�

Together with the proceeding applied deformation, comparison of
the strain energy function from the literature �65� with the corre-
sponding material properties �20� for deformations in the range of
�=0→0.02 established the values of 
1 and 
2 shown in Table 1.

4.2 Axial Elongation With No Applied Electric Field. For
the case of a uniaxial tension along the e1 axis at the ambient
temperature with no applied electric field, Eq. �1� is

x1 = �X1 �28a�

x2 =
1
��

X2 �28b�

x3 =
1
��

X3 �28c�

where � is the principal stretch along the e1 axis. The components
of C with respect to the basis set are C11=�2, C22=C33=1 /�, and
C23=C13=C12=0. Based on these assumptions, Eq. �25� simplifies
to

� =
1

2

1��2 +

2

�
− 3� +

1

2

2�2� +

1

�2 − 3� �29�

With the assumption that 
1 /
2=7 �66�, the sum of the squares of
the error were minimized between Eqs. �27� and �29� and the free
energy found from the literature �65� for the range of 1
�
�1.02. The resulting values of 
1 and 
2 are listed in Table 1 for
all three polymer systems. These two material parameters repre-
sent the hyperelastic response of the electrostrictive polymers in
the absence of an electric field.

4.3 Transversely Applied Electric Field. For the case of no
deformation at the ambient temperature and an applied electric
field of E=Ee2+Ee3, Eq. �25� simplifies to

� = − 
6E2 �30�

Comparison of Eq. �30� with the small-deformation free-energy
equation �65� reveals that 
6 is the permittivity in the e2 and e3
directions, which are perpendicular to the axis of symmetry. If it is
assumed that permittivity in the e1 direction is the same, then it is
apparent from Eq. �25� that 
5=
6. From the data on the three
polymer systems �20�, the resulting values of 
5 and 
6 are shown
in Table 1.

4.4 Axial Elongation With Applied Electric Field. For the
case of uniaxial tension along the e1 axis at the ambient tempera-
ture and an applied electric field of E=Ee1 with no initial electric
displacement, Eq. �1� is

x1 = �X1 �31a�

x2 =
1
��

X2 �31b�

x3 =
1
��

X3 �31c�

where � is the principal stretch along the e1 axis. The components
of C with respect to the basis set are C11=�2, C22=C33=1 /�, and
C23=C13=C12=0. For this condition, Eq. �25� simplifies to

� =
1

2

1��2 +

2

�
− 3� +

1

2

2�2� +

1

�2 − 3� −
1

2

4E2��2 − 1�

−
1

2

5E2 �32�

Although the assumption of no initial electric displacement is not
realistic, it is necessary here for illustrative purposes because the
formulation from the literature �20� did not include it. Therefore,
for an accurate characterization of the current model using data
from the model of Ref. �20�, the initial electric displacement must
be set to zero. Because the material parameters 
1, 
2, 
5, and 
6
have been determined with the preceding loading conditions, the
only unknown parameter in Eq. �32� is the material parameter 
4
�
3 is zero-valued at room temperature�, which serves as an elec-
tromechanical coupling parameter, which is analogous to the pi-
ezoelectric constant in piezoelectric materials. For each material,
the value of 
4 was determined by comparing the free energies
from Eq. �32� and from the literature �20� and minimizing the sum
of the squares of the errors between the two energies by iteratively
adjusting the 
4 parameter. The energies were compared for a
deformation range of 1
��1.02 and an applied electric field of
E=1 GV. The resulting values of 
4 for the three electrostrictive
polymers are listed in Table 1.

5 Conclusions
The characterization of the model in this paper demonstrates its

functional simplicity. The scalar free-energy density expression of
Eq. �25� and the resulting constitutive relationships of Eqs. �23�
and �24a�–�24c� have a relatively simple form and are very pow-
erful in that they can describe the large-deformation behavior of
the material as a function of temperature, applied deformations,
and applied electric fields. Although a limited number of material
parameters were established for the three electrostrictive elas-
tomers, a full set of electrothermal-mechanical data on these ma-
terials could be used to fully characterize the model.

References
�1� Bauer, F., Fousson, E., and Zhang, Q. M., 2006, “Recent Advances in Highly

Electrostrictive P�VDF-TrFE-CFE� Terpolymers,” IEEE Trans. Dielectr.
Electr. Insul., 13�5�, pp. 1149–1154.

�2� Bauer-Gogonea, S., Camacho-Gonzalez, F., Schwodiauer, R., Ploss, B., and
Bauer, S., 2007, “Nonlinear Capacitance Dilatometry for Investigating Elastic
and Electromechanical Properties of Ferroelectrets,” Appl. Phys. Lett., 91�12�,
p. 122901.

�3� Beom, H. G., Kim, Y. H., Kim, C. B., and Cho, C., 2008, “Modified Boundary
Layer Analysis of an Electrode in an Electrostrictive Material,” Arch. Appl.
Mech., 78�3�, pp. 191–209.

Table 1 Isotheral electromechanical material parameters for electrostrictive polymers at room
temperature


1
�MPa�


2
�MPa�


3
�MPa�


4
�MPa�m2 /V2


5
�MPa�m2 /V2


6
�MPa�m2 /V2

PS 2000 11.2 1.6 0.0 −2.1�10−16� 5.4�10−17� 5.4�10−17�
PS 1000 6.3 0.9 0.0 1.6�10−15� 6.4�10−17� 6.4�10−17�
PM 2000 2.2 0.3 0.0 8.4�10−16� 6.9�10−17� 6.9�10−17�

014502-4 / Vol. 77, JANUARY 2010 Transactions of the ASME

Downloaded 04 May 2010 to 171.66.16.45. Redistribution subject to ASME license or copyright; see http://www.asme.org/terms/Terms_Use.cfm



�4� Butkewitsch, S., and Scheinbeim, J., 2006, “Dielectric Properties of a Hy-
drated Sulfonated Poly�Styrene-Ethylene/Butylenes-Styrene� Triblock Copoly-
mer,” Appl. Surf. Sci., 252�23�, pp. 8277–8286.

�5� Diaconu, I., Dorohoi, D. O., and Topoliceanu, F., 2006, “Electrostriction of a
Polyurethane Elastomer-Based Polyester,” IEEE Sens. J., 6�4�, pp. 876–880.

�6� Dubois, P., Rosset, S., Koster, S., Stauffer, J., Mikhailov, S., Dadras, M., de
Rooij, N. F., and Shea, H., 2006, “Microactuators Based on Ion Implanted
Dielectric Electroactive Polymer �EAP� Membranes,” Sens. Actuators, A,
130–131, pp. 147–154.

�7� Galler, N., Ditlbacher, H., Steinberger, B., Hohenau, A., Dansachmuller, M.,
Camacho-Gonzales, F., Bauer, S., Krenn, J. R., Leitner, A., and Aussenegg, F.
R., 2006, “Electrically Actuated Elastomers for Electro-Optical Modulators,”
Appl. Phys. B: Lasers Opt., 85�1�, pp. 7–10.

�8� Ha, J. Y., Jeong, D. Y., Kim, J. S., and Yoon, S. J., 2007, “Fabrication of an
Optical Grating Using High Electrostrictive Strain Polymer as a Template,” J.
Opt. A, Pure Appl. Opt., 9�2�, pp. 170–173.

�9� Xu, H., Shen, D., and Zhang, Q., 2007, “Structural and Ferroelectric Response
in Vinylidene Fluoride/Trifluoroethylene/Hexafluoropropylene Terpolymers,”
Polymer, 48�7�, pp. 2124–2129.

�10� Kim, B. H., Choi, H. J., Park, H. S., Jeong, Y. D., Do Jeong, H., Lee, J. O., and
Jo, N. J., 2006, “Preparation and Properties of Polyurethane/MMT Nanocom-
posite Actuators,” Compos. Interfaces, 13�2–3�, pp. 285–297.

�11� Lam, T. Y., Lau, S. T., Chao, C., Chan, H. L. W., Choy, C. L., Cheung, W. Y.,
and Wong, S. P., 2007, “Characterization of Proton Irradiated Copolymer Thin
Films for Microelectromechanical System Applications,” Appl. Phys. Lett.,
90�4�, p. 043511.

�12� Li, Z. M., Wang, Y. H., and Cheng, Z. Y., 2006, “Electromechanical Properties
of Poly�Vinylidene-Fluoride-Chlorotrifluoroethylene� Copolymer,” Appl.
Phys. Lett., 88�6�, p. 062904.

�13� Pimpin, A., Suzuki, Y., and Kasagi, N., 2007, “Microelectrostrictive Actuator
With Large Out-of-Plane Deformation for Flow-Control Application,” J. Mi-
croelectromech. Syst., 16�3�, pp. 753–764.

�14� Ren, K., Liu, Y. M., Hofmann, H., Zhang, Q. M., and Blottman, J., 2007, “An
Active Energy Harvesting Scheme With an Electroactive Polymer,” Appl.
Phys. Lett., 91�13�, p. 132910.

�15� Zhang, S., Huang, C., Klein, R. J., Xia, F., Zhang, Q. M., and Cheng, Z. Y.,
and 2007, “High Performance Electroactive Polymers and Nano-Composites
for Artificial Muscles,” J. Intell. Mater. Syst. Struct., 18�2�, pp. 133–145.

�16� Spillmann, C. M., Ratna, B. R., and Naciri, J., 2007, “Anisotropic Actuation in
Electroclinic Liquid Crystal Elastomers,” Appl. Phys. Lett., 90�2�, p. 021911.

�17� Xia, F., Tadigadapa, S., and Zhang, Q. M., 2006, “Electroactive Polymer
Based Microfluidic Pump,” Sens. Actuators, A, 125�2�, pp. 346–352.

�18� Zhang, S. H., Neese, B., Ren, K. L., Chu, B. J., Xia, F., Xu, T., Tadigadapa, S.,
Wang, Q., Zhang, Q. M., and Bauer, F., 2006, “Relaxor Ferroelectric Poly-
mers, Thin Film Devices, and Ink-Jet Microprinting for Thin Film Device
Fabrication,” Ferroelectrics, 342, pp. 43–56.

�19� Zhang, Q. M., Li, H. F., Poh, M., Xia, F., Cheng, Z. Y., Xu, H. S., and Huang,
C., 2002, “An All-Organic Composite Actuator Material With a High Dielec-
tric Constant,” Nature �London�, 419�6904�, pp. 284–287.

�20� Guillot, F. M., and Balizer, E., 2003, “Electrostrictive Effect in Polyure-
thanes,” J. Appl. Polym. Sci., 89�2�, pp. 399–404.

�21� Shkel, Y. M., and Klingenberg, D. J., 1998, “Electrostriction of Polarizable
Materials: Comparison of Models With Experimental Data,” J. Appl. Phys.,
83�12�, pp. 7834–7843.

�22� Shankar, R., Ghosh, T. K., and Spontak, R. J., 2007, “Electroactive Nanostruc-
tured Polymers as Tunable Actuators,” Adv. Mater., 19�17�, pp. 2218–2223.

�23� Su, J., Ounaies, Z., and Harrison, J. S., 1999, “Ferroelectric and Piezoelectric
Properties of Blends of Poly�Vinylidene Fluoride-Trifluorethylene� and a Graft
Elastomer,” Proceedings of the Materials Research Society Symposium, Q. M.
Zhang, T. Furukawa, Y. Bar-Cohen, and J. Scheinbeim, eds., Materials Re-
search Society, Boston, MA, pp. 95–100.

�24� Lorberg, H., 1884, “Ueber Electrostriction,” Ann. Phys. Chem., 21, pp. 300–
329.

�25� Sacerdote, M. P., 1899, “Deformations Electriques Des Dielectriques Solides
Isotropes,” J. Phys. Theor. Appl., 8�1�, pp. 457–471.

�26� Sacerdote, M. P., 1901, “Sur un Cas Particulier de Deformation Electrique
D’un Dielectrique Solide Isotrope,” J. Phys. Theor. Appl., 10, pp. 196–200.

�27� Adams, E. P., 1911, “On Electrostriction,” Philos. Mag., 6�22�, pp. 889–900.
�28� Kemble, E. C., 1916, “Note on the End Effect in the Electrostriction of Cylin-

drical Condensers,” Phys. Rev., 7�6�, pp. 614–624.
�29� Pauthenier, M., 1926, “Mesure Photgraphique de l’electrostriction dans le cas

du Tetrachlorure de Carbone,” C. R. Hebd. Seances Acad. Sci., 182, pp. 121–
123.

�30� Cady, W. G., 1929, “Electroelastic and Pyroelectric Phenomena,” Interna-
tional Critical Tables of Numerical Data, Physics, Chemistry and Technology,
E. W. Washburn, ed., McGraw-Hill, New York, pp. 207–212.

�31� Pauthenier, M., 1924, “L’’Electrostriction Dans Les Liquides Tres Peu Bire-
fringents,” J. Phys. Radium, 5, pp. 312–320.

�32� Bruhat, M. M. G., and Pauthenier, M., 1925, “Sur la Theorie de

l’Electrostriction dans les Liquides Isolants,” J. Phys. Radium, 6�1�, pp. 1–9.
�33� Ze, N. T., 1928, “Etude Experimentale des Deformations et des Changements

de proprietes Optiques du Quartz Sous L’Influence du Champ Electrique,” J.
Phys. Radium, 9�1�, pp. 13–37.

�34� Stratton, J. A., 1941, Electromagnetic Theory, McGraw-Hill, New York.
�35� Mason, W. P., 1950, Piezoelectric Crystals and Their Application to Ultrason-

ics, Van Nostrand, New York.
�36� von Hippel, A. R., 1954, Dielectrics and Waves, Chapman and Hall, New

York.
�37� Devonshire, A. F., 1954, “Theory of Ferroelectrics,” Adv. Phys., 3�10�, pp.

85–130.
�38� Nye, J. F., 1957, Physical Properties of Crystals: Their Representation by

Tensors and Matrices, Clarendon, Oxford.
�39� Landau, L. D., and Lifshitz, E. M., 1960, Electrodynamics of Continuous Me-

dia, Pergamon, New York.
�40� Eringen, A. C., 1962, Nonlinear Theory of Continuous Media, McGraw-Hill,

New York.
�41� Toupin, R. A., 1956, “The Elastic Dielectric,” Journal of Rational Mechanics

and Analysis, 5, pp. 850–915.
�42� Baumhauer, J. C., and Tiersten, H. F., 1973, “Nonlinear Electroelastic Equa-

tions for Small Fields Superposed on a Bias,” J. Acoust. Soc. Am., 54�4�, pp.
1017–1034.

�43� Van Sterkenburg, S. W. P., 1991, “Measurement of the Electrostrictive Tensor
of 8 Alkali-Halides,” J. Phys. D, 24�10�, pp. 1853–1857.

�44� Meng, Z. Y., and Cross, L. E., 1985, “Determination of the Electrostriction
Tensor Components in Single-Crystal CaF2 From the Uniaxial-Stress Depen-
dence of the Dielectric Permittivity,” J. Appl. Phys., 57�2�, pp. 488–491.

�45� Damjanovic, D., 1998, “Ferroelectric, Dielectric and Piezoelectric Properties
of Ferroelectric Thin Films and Ceramics,” Rep. Prog. Phys., 61�9�, pp. 1267–
1324.

�46� Sundar, V., and Newnham, R. E., 1992, “Electrostriction and Polarization,”
Ferroelectrics, 135�1–4�, pp. 431–446.

�47� Tiersten, H. F., 1971, “On the Nonlinear Equations of Thermo-
Electroelasticity,” Int. J. Eng. Sci., 9, pp. 587–604.

�48� McMeeking, R. M., Landis, C. M., and Jimenez, S. M. A., 2007, “A Principle
of Virtual Work for Combined Electrostatic and Mechanical Loading of Ma-
terials,” Int. J. Non-Linear Mech., 42�6�, pp. 831–838.

�49� McMeeking, R. M., and Landis, C. M., 2005, “Electrostatic Forces and Stored
Energy for Deformable Dielectric Materials,” Trans. ASME, J. Appl. Mech.,
72�4�, pp. 581–590.

�50� Dorfmann, A., and Ogden, R. W., 2005, “Nonlinear Electroelasticity,” Acta
Mech., 174�3–4�, pp. 167–183.

�51� Pao, Y. H., 1978, “Electromagnetic Forces in Deformable Continua,” Mechan-
ics Today, Vol. 4, S. Nemat-Nasser, ed., Pergamon, New York, pp. 209–305.

�52� Maugin, G. A., 1988, Continuum Mechanics of Electromagnetic Solids, North-
Holland, Amsterdam.

�53� Eringen, A. C., and Maugin, G. A., 1990, Electrodynamics of Continua: I
Foundations and Solid Media, Springer, New York.

�54� Eringen, A. C., and Maugin, G. A., 1990, Electrodynamics of Continua: II
Fluids and Complex Media, Springer, New York.

�55� Hutter, K., van de Ven, A. A. F., and Ursescu, A., 2006, Electromagnetic Field
Matter Interactions in Thermoelastic Solids and Viscous Fluids, Springer, New
York.

�56� Zhao, X. H., and Suo, Z. G., 2008, “Electrostriction in Elastic Dielectrics
Undergoing Large Deformation,” J. Appl. Phys., 104�12�, p. 123530.

�57� Truesdell, C. A., and Toupin, R. A., 1960, “The Classical Field Theories,”
Encyclopedia of Physics, Vol. III/1, S. Flugge, ed., Springer-Verlag, Berlin,
Germany.

�58� Truesdell, C., and Noll, W., 2004, The Non-Linear Field Theories of Mechan-
ics, Springer-Verlag, New York.

�59� Eringen, A. C., 1999, Microcontinuum Field Theories, Springer-Verlag, New
York.

�60� de Groot, S. R., and Suttorp, L. G., 1972, Foundations of Electrodynamics,
American Elsevier, New York.

�61� Eringen, A. C., 1967, Mechanics of Continua, Wiley, New York.
�62� Suo, Z. G., Zhao, X. H., and Greene, W. H., 2008, “A Nonlinear Field Theory

of Deformable Dielectrics,” J. Mech. Phys. Solids, 56�2�, pp. 467–486.
�63� Bustamante, R., Dorfmann, A., and Ogden, R. W., 2008, “Nonlinear Electro-

elastostatics: A Variational Framework,” ZAMP, 60�1�, pp. 154–177.
�64� Spencer, A. J. M., 1971, “Theory of Invariants,” Continuum Physics, Vol. 1, A.

C. Eringen, ed., Academic, New York, pp. 239–353.
�65� Guillot, F. M., Jarzynski, J., and Balizer, E., 2001, “Measurement of Electros-

trictive Coefficients of Polymer Films,” J. Acoust. Soc. Am., 110�6�, pp.
2980–2990.

�66� Anand, L., 1986, “Moderate Deformations in Extension Torsion of Incom-
pressible Isotropic Elastic-Materials,” J. Mech. Phys. Solids, 34�3�, pp. 293–
304.

Journal of Applied Mechanics JANUARY 2010, Vol. 77 / 014502-5

Downloaded 04 May 2010 to 171.66.16.45. Redistribution subject to ASME license or copyright; see http://www.asme.org/terms/Terms_Use.cfm


	RESEARCH PAPERS
	TECHNICAL BRIEFS

